單調(diào)遞增數(shù)列的前項(xiàng)和為,且滿足,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和

(1);(2) .

解析試題分析:(1)由,先得到,當(dāng)時(shí):,得到之間關(guān)系,,故得出是首項(xiàng)為1,公差為1的等差數(shù)列;(2)先由對(duì)數(shù)式的運(yùn)算性質(zhì)求出,然后用錯(cuò)位相減法得到.
試題解析:(1)將代入          (1)  解得:
當(dāng)時(shí):  (2)
由(1)-(2)得: 整理得:
即:  ()
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/8/4epmt1.png" style="vertical-align:middle;" />單調(diào)遞增,故:
所以:是首項(xiàng)為1,公差為1的等差數(shù)列,
(2)由
得:  即: 
利用錯(cuò)位相減法解得:.
考點(diǎn):1.等差數(shù)列通項(xiàng)公式;2.錯(cuò)位相減法;3.對(duì)數(shù)式的運(yùn)算性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列和等比數(shù)列中,a1=2,  2b1=2,  b6=32,  的前20項(xiàng)和S20=230.
(Ⅰ)求;
(Ⅱ)現(xiàn)分別從的前4中各隨機(jī)抽取一項(xiàng),寫出相應(yīng)的基本事件,并求所取兩項(xiàng)中,滿足an>bn的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,成等差數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)等比數(shù)列,若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:
(Ⅰ) 求證:數(shù)列是等差數(shù)列并求的通項(xiàng)公式;
(Ⅱ) 設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,點(diǎn)在直線上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式  
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的公差=1,前項(xiàng)和為.
(I)若;
(II)若

查看答案和解析>>

同步練習(xí)冊(cè)答案