精英家教網 > 高中數學 > 題目詳情
若函數f(x)和g(x)都為奇函數,函數F(x)=af(x)+bg(x)+3在(0,+∞)上有最大值10,則F(x)在(-∞,0)上有( 。
分析:首先根據f(x)和g(x)都是奇函數,得對任意實數x,都有f(-x)=-f(x)且g(-x)=-g(x).由函數F(x)在(0,+∞)上有最大值10,可以證得:當x<0時,F(xiàn)(-x)≤10,再結合f(x)和g(x)為奇函數,整理得af(x)+bg(x)≥-7,可得當x<0時,F(xiàn)(x)=af(x)+bg(x)+3≥-4.設F(x)=af(x)+bg(x)+3在(0,+∞)上取最大值時的x=x0,結合結合f(x)和g(x)為奇函數,可以證出當x<0時,F(xiàn)(x)的最小值為F(-x0)=-4.從而得出正確答案.
解答:解:∵函數f(x)和g(x)都為奇函數,
∴對任意實數x,都有f(-x)=-f(x)且g(-x)=-g(x).
當x>0時,F(xiàn)(x)=af(x)+bg(x)+3的最大值為10,
設F(x)=af(x)+bg(x)+3取最大值時的x=x0,(x0是正數)
即對任意的x>0,均有F(x)≤F(x0)=10,
∴當x<0時,F(xiàn)(-x)≤10,即af(-x)+bg(-x)+3≤10
∴af(-x)+bg(-x)≤7,即-af(x)-bg(x)≤7
∴af(x)+bg(x)≥-7,可得F(x)=af(x)+bg(x)+3≥-4
∵F(-x0)=af(-x0)+bg(-x0)+3=-[af(x0)+bg(x0)+3]+6,
∴F(-x0)=-F(x0)+6=-10+6=-4,
∴F(x)在(-∞,0)上當x=-x0時,F(xiàn)(x)有最小值為-4.
故選C
點評:本題從一個由兩個奇函數組合而成的函數出發(fā),研究了它的最值問題,著重考查了函數的單調性與奇偶性的綜合和抽象函數處理等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、若函數f(x)和g(x)的定義域、值域都是R,則不等式f(x)>g(x)有解的充要條件是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+(a+1)x+lg|a+2|,g(x)=(a+1)x,(a∈R,a≠-2).
(1)若函數f(x)和g(x)在區(qū)間[lg|a+2|,(a+1)2]上都是減函數,求實數a的取值范圍;
(2)在(1)的條件下,比較f(1)與
16
的大小,寫出理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b是實數,函數f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的導函數,若f′(x)g′(x)≥0在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上單調性一致
(1)設a>0,若函數f(x)和g(x)在區(qū)間[-1,+∞)上單調性一致,求實數b的取值范圍;
(2)設a<0,且a≠b,若函數f(x)和g(x)在以a,b為端點的開區(qū)間上單調性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)和g(x)都是奇函數,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值6,則F(x)在(-∞,0)上(  )

查看答案和解析>>

同步練習冊答案