6.對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若a>b>1,且有(x-1)f′(x)≥0,則必有( 。
A.f(a)+f(b)<2 f(1)B.f(a)+f(b)≤2 f(1)C.f(a)+f(b)≥2 f(1)D.f(a)+f(b)>2 f(1)

分析 函數(shù)f(x)滿足(x-1)f′(x)>0,對(duì)x與1的大小關(guān)系分類討論即可得出函數(shù)f(x)的單調(diào)性.

解答 解:∵函數(shù)f(x)滿足(x-1)f′(x)>0,
∴x>1時(shí),f′(x)>0,此時(shí)函數(shù)f(x)單調(diào)遞增;
x<1時(shí),f′(x)<0,此時(shí)函數(shù)f(x)單調(diào)遞減,
若a>b>1,
則f(a)≥f(1),f(b)≥f(1),
故f(a)+f(b)≥2f(1),
故選:C.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.G為△ADE的重心,點(diǎn)P為△DEG內(nèi)部(含邊界)上任一點(diǎn),B,C均為AD,AE上的三等分點(diǎn)(靠近點(diǎn)A),$\overrightarrow{AP}$=α$\overrightarrow{AB}$+β$\overrightarrow{AC}$(α,β∈R),則α+$\frac{1}{2}$β的范圍是( 。
A.[1,2]B.[1,$\frac{3}{2}$]C.[$\frac{3}{2}$,2]D.[$\frac{3}{2}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)M是橢圓$\frac{x^2}{4}+{y^2}=1$上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),且滿足$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,則△MF1F2的面積為(  )
A.1B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在某次考試中,從甲、乙兩個(gè)班各抽取10名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,兩個(gè)班成績(jī)的莖葉圖如圖所示.
(1)求甲班的平均分;
(2)從甲班和乙班成績(jī)90~100的學(xué)生中抽取兩人,求至少含有甲班一名同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一球內(nèi)切于底面半徑為$\sqrt{3}$,高為3的圓錐,則內(nèi)切球半徑是1;內(nèi)切球與該圓錐的體積之比為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)為F(1,0),點(diǎn)A(2,0)在橢圓上,過F(1,0)點(diǎn)的直線l與橢圓C交于不同兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)設(shè)直線l斜率為1,求線段MN的長(zhǎng);
(3)設(shè)線段MN的垂直平分線交y軸于點(diǎn)P(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)z滿足$z=\frac{2+i}{i}$(其中i為虛數(shù)單位),則$\overline z$=(  )
A.-1+2iB.-1-2iC.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\frac{\sqrt{x+2}}{x+5}$的最大值為$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在空間直角坐標(biāo)系O-xyz中,有兩點(diǎn)P(1,-2,3),M(2,0,4)則兩點(diǎn)之間的距離為$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案