【題目】如圖,在三棱錐A﹣BCD中,平面ABC⊥平面BCD,△BAC與BCD均為等于直角三角形,且∠BAC=∠BCD=90°,BC=2,點P是線段AB上的動點,若線段CD上存在點Q,使得異面直線PQ與AC成30°的角,則線段PA長的取值范圍是(
A.(0,
B.[0, ]
C.(
D.( ,

【答案】B
【解析】解:以C為原點,CD為x軸,CB為y軸,過C作平面BCD的垂線為z軸, 建立空間直角坐標(biāo)系,
則A(0,1,1),B(0,2,0),C(0,0,0),
設(shè)Q(q,0,0), =(0,λ,﹣λ),
= = =(q,0,0)﹣(0,1,1)﹣(0,λ,﹣λ)=(q,﹣1﹣λ,λ﹣1),
∵異面直線PQ與AC成30°的角,
∴cos30°= = = = ,
∴q2+2λ2+2= ,∴
,解得0
∴| |= ∈[0, ],
∴線段PA長的取值范圍是[0, ].
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a> ,且當(dāng)x∈[ ,a]時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD= CD=1.
(1)若M為PA中點,求證:AC∥平面MDE;
(2)若平面PAD與PBC所成的銳二面角的大小為 ,求線段PD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若存在x1、x2、…xn滿足 = =…= = ,則x1+x2+…+xn的值為(
A.4
B.6
C.8
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機抽取三個月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 中斜率和截距的最小二乘估計公式分別為:
= ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=﹣x+3與橢圓C:mx2+ny2=1(n>m>0)有且只有一個公共點P(2,1).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若直線l′:y=﹣x+b交C于A,B兩點,且PA⊥PB,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,C=2A,cosA= , = ,則b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:向量 =( ,0),O為坐標(biāo)原點,動點M滿足:| + |+| |=4.
(1)求動點M的軌跡C的方程;
(2)已知直線l1 , l2都過點B(0,1),且l1⊥l2 , l1 , l2與軌跡C分別交于點D,E,試探究是否存在這樣的直線使得△BDE是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工人在懸掛如圖所示的一個正六邊形裝飾品時,需要固定六個位置上的螺絲,首先隨意擰緊一個螺絲,接著擰緊距離它最遠的第二個螺絲,再隨意擰緊第三個螺絲,接著擰緊距離第三個螺絲最遠的第四個螺絲,第五個和第六個以此類推,則不同的固定方式有種.

查看答案和解析>>

同步練習(xí)冊答案