【題目】袋子中有四個小球,分別寫有美、麗、中、國四個字,有放回地從中任取一個小球,直到“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生03之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表中、國、美、麗這四個字,以每三個隨機數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

232 321 230 023 123 021 132 220 001

231 130 133 231 031 320 122 103 233

由此可以估計,恰好第三次就停止的概率為

A. B. C. D.

【答案】C

【解析】

18組隨機數(shù)中,找到恰好第三次就停止的有4組,由古典概型概率公式可得結(jié)果.

因為隨機模擬產(chǎn)生18組隨機數(shù),

由隨機產(chǎn)生的隨機數(shù)可知,恰好第三次就停止的有:

,,,4個基本事件,

根據(jù)古典概型概率公式可得,

恰好第三次就停止的概率為,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,為拋物線上的相異兩點,且.

1)若直線,求的值;

2)若直線的垂直平分線交軸與點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是菱形,,

(1)求證:平面平面;

(2),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分13分)

工作人員需進入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人.現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.

1)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

2)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);

3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達到最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①已知,是正數(shù),且,則;

②命題“,使得”的否定是真命題;

③將化成二進位制數(shù)是;

④某同學(xué)研究變量,之間的相關(guān)關(guān)系,并求得回歸直線方程,他得出一個結(jié)論: 負相關(guān)且,

其中正確的命題的序號是__________(把你認為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,動圓與圓外切,且圓與直線相切,記動圓圓心的軌跡為曲線

(1)求曲線的軌跡方程;

(2)設(shè)過定點的動直線與曲線交于兩點,試問:在曲線上是否存在點(與兩點相異),當直線的斜率存在時,直線的斜率之和為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中)的周期為,且圖象上一個最低點為

(1)求的解析式;

(2)當時,求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖,該圖象與軸交于點,與軸交于點兩點,為圖象的最高點,且的面積為.

(1)求的解析式及其單調(diào)遞增區(qū)間;

(2)若,且,求的值.

(3)若將的圖象向右平移個單位,再將所得圖象上所有點的橫坐標伸長為原來的倍(縱坐標不變),得到函數(shù)的圖像.試求關(guān)于的方程的所有根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,若存在常數(shù),使得對任意的成立,則稱函數(shù)是“類周期函數(shù)”.

(1)判斷函數(shù)是否是“類周期函數(shù)”,并證明你的結(jié)論;

(2)求證:若函數(shù)是“類周期函數(shù)”,且是偶函數(shù),則是周期函數(shù);

(3)求證:當時,函數(shù)一定是“類周期函數(shù)”.

查看答案和解析>>

同步練習(xí)冊答案