【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)增區(qū)間;最大值,以及取得最大值時(shí)x的取值集合;

(2)已知中,角A、BC的對(duì)邊分別為a,bc,若,求實(shí)數(shù)a的取值范圍.

【答案】(1)2, .

(2) a∈[1,2).

【解析】分析:(1)由三角恒等變換的公式,化簡(jiǎn)得,利用三角函數(shù)的圖象與性質(zhì),即可得到結(jié)果.

(2)由,求得,再由余弦定理和基本不等式,即可求解邊的取值范圍.

詳解:(1),

,可得f(x)遞增區(qū)間為,

函數(shù)f(x)最大值為2,當(dāng)且僅當(dāng),即,

取到∴.

(2)由,化簡(jiǎn)得,

,

在△ABC中,根據(jù)余弦定理,得a2=b2+c2-bc=(b+1)2-3bc,

b+c=2,知bc≤1,即a2≥1,∴當(dāng)b=c=1時(shí),取等號(hào),

又由b+c>aa<2,所以a∈[1,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱,底面,底面是梯形,AB//DC,,

(1).求證:平面平面;

(2)求二面角的平面角的正弦值

(3).在線段上是否存在一點(diǎn),使AP//平面.若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用隨機(jī)模擬的方法可以估計(jì)圓周率的值,為此設(shè)計(jì)如圖所示的程序框圖,其中表示產(chǎn)生區(qū)間上的均勻隨機(jī)數(shù)(實(shí)數(shù)),若輸出的結(jié)果為786,則由此可估計(jì)的近似值為( )

A. 3.134 B. 3.141 C. 3.144 D. 3.147

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,分別為線段上的點(diǎn),且,.

(1)證明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體中,平面,,

(Ⅰ)證明:平面;

(Ⅱ)在線段上是否存在點(diǎn),使得,若存在,求的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點(diǎn),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2) 已知點(diǎn)的極坐標(biāo)為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列不等式的解集:

1

2

3

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,,,點(diǎn)為棱的中點(diǎn).

(Ⅰ)證明:

Ⅱ)若點(diǎn)為棱上一點(diǎn),且求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓錐底面半徑為底面圓圓心,點(diǎn)Q為半圓弧的中點(diǎn),點(diǎn)為母線的中點(diǎn),所成的角為,求:

(1)圓錐的側(cè)面積;

(2)兩點(diǎn)在圓錐面上的最短距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案