【題目】如圖,在三棱柱中,、分別是、的中點.

)證明:平面;

)若這個三棱柱的底面是等邊三角形,側面都是正方形,求二面角的余弦值.

【答案】(Ⅰ)見解析; (Ⅱ).

【解析】

)取的中點,連接、,證明四邊形為平行四邊形,可得出,再利用直線與平面平行的判定定理可證明出平面;

)取、的中點、,連接、,證明出平面以及,然后以點為坐標原點,、、所在直線分別為軸、軸、軸建立空間直角坐標系,計算出平面和平面的法向量,利用空間向量法求出二面角的余弦值.

)證明:取的中點為,連接、.

、分別為的中點,,且

的中點,.

,四邊形為平行四邊形,.

平面,平面平面;

)解:設的中點為,連接,

為等邊三角形 ,∴

側面都是正方形 ,,,

、平面,平面,

平面,,平面.

中點為,連接,則.

為原點,以、分別為、、軸建立空間直角坐標系,如圖.

,則、、,

,,

設平面的法向量為,則,

,得,

取平面的法向量為.,

結合圖形可知,二面角為銳角,其余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,

1)若直線過定點,且與圓C相切,求的方程.

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是  

A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球

C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過兩點,且圓心在直線.

1)求圓的方程;

2)從軸上一個動點向圓作切線,求切線長的最小值及對應切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有1998名運動員號碼為1~1998這1998個自然數(shù),從中選出若干名運動員參加儀仗隊,但要使剩下的運動員中沒有一個人的號碼數(shù)等于另外兩人的號碼數(shù)的乘積.那么,選為儀仗隊的運動員至少能有多少人?給出你的選取方案,并簡述理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校研究性學習小組發(fā)現(xiàn),學生上課的注意力指標隨著聽課時間的變化而變化.老師講課開始時學生的興趣激增,接下來學生的興趣將保持較理想的狀態(tài)一段時間,隨后學生的注意力開始分散.該小組發(fā)現(xiàn)注意力指標與上課時刻第分鐘末的關系如下(,設上課開始時,t=0).若上課后第5分鐘末時的注意力指標為140.

1)求的值;

2)上課后第5分鐘末和第35分鐘末比較,哪個時刻注意力更集中?

3)在一節(jié)課中,學生的注意力指標至少達到140的時間能保持多長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】氣象意義上,從春季進入夏季的標志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個數(shù)據(jù)的中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進入夏季的地區(qū)的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知常數(shù),數(shù)列的前n項和為,,.

1)求數(shù)列的通項公式;

2)若,且數(shù)列是單調遞增數(shù)列,求實數(shù)a的取值范圍;

3)若,,對于任意給定的正整數(shù)k,是否都存在正整數(shù)p、q,使得?若存在,試求出p、q的一組值(不論有多少組,只要求出一組即可);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三棱錐的高為6,側面與底面成的二面角,則其內切球(與四個面都相切)的表面積為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案