已知四邊形ABCD是邊長(zhǎng)為1的正方形,MA⊥平面ABCD,MA=2動(dòng)點(diǎn)P在正方形的邊上從點(diǎn)A出發(fā)經(jīng)過(guò)點(diǎn)B運(yùn)動(dòng)到點(diǎn)C.設(shè)點(diǎn)P走過(guò)的路程為x,△MAP的面積為S(x),則函數(shù)y=S2(x)的圖象是(  )
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分點(diǎn)P沿正方形的邊上從點(diǎn)A到點(diǎn)B的過(guò)程中與點(diǎn)P在正方形的邊上從點(diǎn)B到點(diǎn)C的過(guò)程中兩種情況下求函數(shù)的解析式,選出答案.
解答: 解:點(diǎn)P在正方形的邊上從點(diǎn)A到點(diǎn)B的過(guò)程中,0≤x≤1,S(x)=
1
2
×2×x=x,∴y=S2(x)=x2,故排除AC;
點(diǎn)P在正方形的邊上從點(diǎn)B到點(diǎn)C的過(guò)程中,BP=x-1,
∴AP=
BP2+AB2
=
(x-1)2+1
,
∴y=S2(x)=(x-1)2+1,此拋物線開(kāi)口向上,頂點(diǎn)為(1,1),故BD中只有B符合,
故選:B
點(diǎn)評(píng):本題主要考查分類討論的數(shù)學(xué)思想,同時(shí)考查利用函數(shù)的解析式來(lái)探究函數(shù)圖象的規(guī)律,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=1.
(1)已知直線l:ax+by+c=0,且滿足條件3(a2+b2)=4c2,試判斷直線與圓O的位置關(guān)系;
(2)求
y-1
x-2
的取值范圍;
(3)圓O上有兩點(diǎn)到直線y=kx+2的距離為
1
2
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z滿足條件|z-i|+|z+i|=2,那么|z+i+1|的最大值為
 
,此時(shí)復(fù)數(shù)z為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄AP與圓C1:(x+1)2+y2=
1
8
外切,與圓C2(x-1)2+y2=
49
8
內(nèi)切.
(1)求動(dòng)圓的圓心P的軌跡C的方程;
(2)設(shè)點(diǎn)M(
1
4
,0),是否存在過(guò)點(diǎn)F(1,0)且與x軸不垂直的直線l與軌跡C交于A、B兩點(diǎn),使得
MA
+
MB
AB
?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

an=
2n-1,(n為奇數(shù))
2
n
2
,(n為偶數(shù))
,則S20=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a(x-
1
x
)-2lnx(a∈R),g(x)=-
a
x
,若至少存在一個(gè)x0∈[1,e],使f(x0)>g(x0)成立,則實(shí)數(shù)a的范圍為(  )
A、[λ,+∞)
B、(0,+∞)
C、[0,+∞)
D、(G(x),+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某段鐵路所有車站共發(fā)行20種普通車票,那么這段鐵路共有車站數(shù)是(  )
A、4B、5C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算a?b=
a,a≤b
b,a>b
,已知函數(shù)f(x)=x?(-x2+2),則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinθ,-2)與
b
=(1,cosθ)互相垂直,其中θ∈(0,
π
2
),則
1
sin2θ
=( 。
A、
5
4
B、
3
4
C、
4
5
D、
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案