設(shè)P為橢圓=1(a>b>0)上任一點(diǎn),F1、F2分別為左、右焦點(diǎn),求|PF1|·|PF2|的最大、最小值.
當(dāng)x02=0,即x0=0時(shí),z最大=a2;
當(dāng)x0=±a,x02=a2時(shí),z最小=a2-·a2=a2-c2=b2.
解法一:令z=|PF1|·|PF2|=(a+ex0)(a-ex0)=a2-e2x02.
∵-a≤x0≤a,∴0≤x02≤a2.
當(dāng)x02=0,即x0=0時(shí),z最大=a2;
當(dāng)x0=±a,x02=a2時(shí),z最小=a2-·a2=a2-c2=b2.
解法二:∵|PF1|+|PF2|=2a,∴|PF1|·|PF2|≤()2=a2,
當(dāng)且僅當(dāng)|PF1|=|PF2|時(shí),取“=”.∴z最大=a2.求z最小同上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,坐標(biāo)原點(diǎn)為O.圓C上任意一點(diǎn)A在x軸上的射影為點(diǎn)B,已知向量.
(1)求動(dòng)點(diǎn)Q的軌跡E的方程;
(2)當(dāng)時(shí),設(shè)動(dòng)點(diǎn)Q關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)P,直線PD交軌跡E于點(diǎn)F(異于P點(diǎn)),證明:直線QF與x軸交于定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求橢圓=1(a>b>0)的內(nèi)接矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.“神舟”五號(hào)飛船運(yùn)行軌道是以地球的中心F為焦點(diǎn)的橢圓,測(cè)得近地點(diǎn)A距地面為m km,遠(yuǎn)地點(diǎn)B距地面為n km,設(shè)地球半徑為R km,關(guān)于橢圓有以下說法:
①焦距長(zhǎng)為n-m;
②短軸長(zhǎng)為;
③離心率為e=;
④以AB方向?yàn)閤軸的正方向,F為坐標(biāo)原點(diǎn),則左準(zhǔn)線方程為x=-.
以上說法正確的有__________________(填上所有你認(rèn)為正確說法的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以橢圓兩焦點(diǎn)為直徑端點(diǎn)的圓交橢圓于四個(gè)不同點(diǎn),順次連接四個(gè)交點(diǎn)和兩個(gè)焦點(diǎn)恰好圍成一個(gè)正六邊形,則這個(gè)橢圓的離心率為(    )
A.B.C.-D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

離心率為,且過點(diǎn)(2,0)的橢圓的標(biāo)準(zhǔn)方程為(   )
A.+y2=1或+="1"B.+y2=1或+=1
C.+y2="1"D.+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓=1的焦距為2,則m的值等于__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知離心率為的橢圓過點(diǎn),是坐標(biāo)原點(diǎn).
(1)求橢圓的方程;                                               
(2)已知點(diǎn)為橢圓上相異兩點(diǎn),且,判定直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓=1的準(zhǔn)線平行于x軸,則實(shí)數(shù)m的取值范圍是(    )
A.-1<m<3B.-<m<3且m≠0
C.-1<m<3且m≠0D.m<-1且m≠0

查看答案和解析>>

同步練習(xí)冊(cè)答案