已知等差數(shù)列的公差,設(shè)的前項(xiàng)和為,
(1)求;
(2)求)的值,使得.
(1),);(2),.

試題分析:(1)根據(jù)求出,再由,求出數(shù)列的通項(xiàng)公式,用等差數(shù)列的求和公式求;(2)由(1)的結(jié)論,把表示為的等式,由條件
得出,解方程組求得結(jié)論.
(1)由題意,,
代入上式得,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053647256436.png" style="vertical-align:middle;" />,所以,從而,).
(2)由(1)知,,
所以
知,
所以,所以.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知首項(xiàng)都是1的兩個(gè)數(shù)列),滿(mǎn)足.
(1)令,求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和Sn
(2)設(shè)Tn為數(shù)列{}的前n項(xiàng)和,問(wèn)是否存在常數(shù)m,使Tn=m[],若存在,求m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的通項(xiàng)是,則數(shù)列中的正整數(shù)項(xiàng)有(    )項(xiàng).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)關(guān)于x的不等式的解集中整數(shù)的個(gè)數(shù)為,數(shù)列的前n項(xiàng)和為,
=________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是等差數(shù)列,滿(mǎn)足,,數(shù)列滿(mǎn)足,,且是等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列滿(mǎn)足:,且、成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式.
(2)記為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得若存在,求的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列的公差,且成等比數(shù)列,則的值是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,,公差為,前項(xiàng)和為,當(dāng)且僅當(dāng)時(shí)取最大值,則的取值范圍_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案