【題目】已知拋物線的頂點為,焦點.
(1)求拋物線的方程;
(2)過作直線交拋物線于、兩點.若直線、分別交直線:于、兩點,求的最小值.
【答案】(1);(2)
【解析】
(1)由拋物線的幾何性質(zhì)及題設(shè)條件焦點,可直接求得,確定出拋物線的開口方向,寫出物線的標(biāo)準(zhǔn)方程.
(2)由題意,可,,直線的方程為,將直線方程與拋物線方程聯(lián)立,寫出韋達(dá)定理,再結(jié)合弦長公式求出,分別求出和即可表示出,最后利用換元法和二次函數(shù),即可求得最小值.
()由題意可設(shè)拋物線的方程為,則,解得,
故拋物線的方程為;
(2)設(shè),,直線的方程為,
由消去,整理得,
所以,,
從而有,
由解得點的橫坐標(biāo)為,
同理可得點的橫坐標(biāo)為,
所以
,
令,,則,
當(dāng)時,,
當(dāng)時,,
綜上所述,當(dāng),即時,的最小值是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且曲線y=f(x)在其與y軸的交點處的切線記為l1,曲線y=g(x)在其與x軸的交點處的切線記為l2,且l1∥l2.
(1)求l1,l2之間的距離;
(2)若存在x使不等式成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)f(x)和g(x)的公共定義域中的任意實數(shù)x0,稱|f(x0)-g(x0)|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)f(x)和g(x)在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知p:函數(shù)f(x)在R上是增函數(shù),f(m2)<f(m+2)成立;q:方程1(m∈R)表示雙曲線.
(1)若p為真命題,求m的取值范圍;
(2)若p∨q為真,p∧q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸為非負(fù)半軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)求直線與曲線交于兩點,線段的中點的橫坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為2的正方形,平面平面,且,是線段的中點,過作直線,是直線上一動點.
(1)求證:;
(2)若直線上存在唯一一點使得直線與平面垂直,求此時二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦與.當(dāng)直線斜率為0時,.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點P的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos=a,且點P在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)曲線的極坐標(biāo)方程為.若與交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列中,,,分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.
第一列 | 第二列 | 第三列 | |
第一行 | 5 | 8 | 2 |
第二行 | 4 | 3 | 12 |
第三行 | 16 | 6 | 9 |
(1)請選擇一個可能的組合,并求數(shù)列的通項公式;
(2)記(1)中您選擇的的前項和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,分別在上,且,沿 將四邊形折成四邊形,使點在平面上的射影在直線上
(1)求證:平面平面;
(2)求證:平面;
(3)求二面角的正弦值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com