【題目】已知是定義在上的奇函數(shù),且,若對任意的m,,,都有.
若,求a的取值范圍.
若不等式對任意和都恒成立,求t的取值范圍.
【答案】(1);(2)
【解析】
(1)由函數(shù)的單調(diào)性的定義,構(gòu)造出f(x)在定義域[﹣5,5],上是增函數(shù),通過增函數(shù)性質(zhì)解不等式得a的取值范圍;
(2)由f(x)單調(diào)遞增且奇函數(shù),利用其最大值整理得關(guān)于a,t 的不等式,由a∈[﹣3,0]都恒成立,根據(jù)單調(diào)性可以求t的取值范圍.
解:設(shè)任意x1,x2滿足﹣5≤x1<x2≤5,由題意可得:
f(x1)﹣f(x2)即f(x1)<f(x2).所以f(x)在定義域[﹣5,5],上是增函數(shù),
由f(2a﹣1)<f(3a﹣3),得,解得2<a,
故a的取值范圍為(2,];
(2)由以上知f(x)是定義在[﹣5,5]上的單調(diào)遞增的奇函數(shù),且f(﹣5)=﹣2,
得在[﹣5,5]上f(x)max=f(5)=﹣f(﹣5)=2.
在[﹣5,5]上不等式f(x)≤(a﹣2)t+5對a∈[﹣3,0]都恒成立,
所以2≤(a﹣2)t+5即at﹣2t+3≥0,對a∈[﹣3,0]都恒成立,
令g(a)=at﹣2t+3,a∈[﹣3,0],則只需,即.
解得t
故t的取值范圍(﹣∞,].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認(rèn)識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據(jù).
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請畫出上表數(shù)據(jù)的散點圖,并說明其相關(guān)關(guān)系;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).
(相關(guān)公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚“中華優(yōu)秀傳統(tǒng)文化”,某中學(xué)在校內(nèi)對全體學(xué)生進行了一次檢測,規(guī)定分?jǐn)?shù)分為優(yōu)秀,為了解學(xué)生的測試情況,現(xiàn)從2000名學(xué)生中隨機抽取100名學(xué)生進行分析,按成績分組,得到如下頻數(shù)分布表。
分?jǐn)?shù) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 5 | 35 | 30 | 20 | 10 |
(1)在圖中作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計這次測試的平均分;
(3)估計這次測試成績的中位數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點重合),且DE=DG,過D點作DF⊥CE,垂足為F. (Ⅰ)證明:B,C,G,F(xiàn)四點共圓;
(Ⅱ)若AB=1,E為DA的中點,求四邊形BCGF的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的命題是
A. 任意三點確定一個平面
B. 三條平行直線最多確定一個平面
C. 不同的兩條直線均垂直于同一個平面,則這兩條直線平行
D. 一個平面中的兩條直線與另一個平面都平行,則這兩個平面平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)圖象上存在不同的兩點A,B關(guān)于y軸對稱,則稱點對[A,B]是函數(shù)y=f(x)的一對“黃金點對”(注:點對[A,B]與[B,A]可看作同一對“黃金點對”).已知函數(shù)f(x)=,則此函數(shù)的“黃金點對“有( )
A. 0對B. 1對C. 2對D. 3對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-,若x∈R,f(x)滿足f(-x)=-f(x).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)(x∈R)的單調(diào)性,并說明理由;
(3)若對任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:
(1)若ab>cd,則 + > + ;
(2) + > + 是|a﹣b|<|c﹣d|的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)的定義域為D,若對于任意的x1 , x2∈D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)的對稱中心.研究函數(shù)f(x)=x+sinπx﹣3的某個對稱中心,并利用對稱中心的上述定義,可求得f( )+f( ) )+…+f( )+f( )的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com