【題目】一盒中裝有各色球12只,其中5個紅球,4個黑球,2個白球,1個綠球;從中隨機取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.

【答案】解:(1)由題意知本題是一個古典概型,
試驗包含的基本事件是從12個球中任取一球共有12種結果;
滿足條件的事件是取出的球是紅球或黑球共有9種結果,
∴概率為P==
(2)由題意知本題是一個古典概型,
試驗包含的基本事件是從12個球中任取一球共有12種結果;
滿足條件的事件是取出的一球是紅球或黑球或白球共有11種結果,
∴概率為P=
即取出的1球是紅球或黑球的概率為;
取出的1球是紅球或黑球或白球的概率為
【解析】(1)由題意知本題是一個古典概型,試驗包含的基本事件是從12個球中任取一球,滿足條件的事件是取出的球是紅球或黑球,
根據(jù)古典概型和互斥事件的概率公式得到結果.
(2)由題意知本題是一個古典概型,試驗包含的基本事件是從12個球中任取一球,滿足條件的事件是取出的一球是紅球或黑球或白球,根據(jù)古典概型公式得到結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程是為參數(shù)),以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位,曲線的極坐標方程是.

(Ⅰ)求直線的普通方程和曲線的直角坐標方程;

(Ⅱ)求直線被曲線的截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)已知橢圓的左焦點為,右頂點為的坐標為,的面積為.

(I)求橢圓的離心率;

(II)在線段,,延長線段與橢圓交于點,點上,,且直線與直線間的距離為,四邊形的面積為.

(i)求直線的斜率;

(ii)求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線),焦點到準線的距離為,過點作直線交拋物線于點(點在第一象限).

()若點焦點重合,且弦長,求直線的方程;

()若點關于軸的對稱點為,直線x軸于點,且,求證:點B的坐標是,并求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個單位有職工80人,其中業(yè)務人員56人,管理人員8人,服務人員16人,為了解職工的某種情況,決定采取分層抽樣的方法。抽取一個容量為10的樣本,每個管理人員被抽到的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學剛搬遷到新校區(qū),學校考慮,若非住校生上學路上單程所需時間人均超過20分鐘,則學校推遲5分鐘上課.為此,校方隨機抽取100個非住校生,調查其上學路上單程所需時間(單位:分鐘),根據(jù)所得數(shù)據(jù)繪制成如下頻率分布直方圖,其中時間分組為[0,10),[10,20),[20,30),[30,40),[40,50].
(1)求頻率分布直方圖中a的值;
(2)從統(tǒng)計學的角度說明學校是否需要推遲5分鐘上課;
(3)若從樣本單程時間不小于30分鐘的學生中,隨機抽取2人,求恰有一個學生的單程時間落在[40,50]上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),且的導數(shù)為.

(Ⅰ)若是定義域內(nèi)的增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若方程有3個不同的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大學生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至12月份銷售某種機械配件的銷售量及銷售單價進行了調查,銷售單價和銷售量之間的一組數(shù)據(jù)如下表所示:

月份

7

8

9

10

11

12

銷售單價(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14

(1)根據(jù)7至11月份的數(shù)據(jù),求出關于的回歸直線方程;

(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?

(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).

 參考公式:回歸直線方程,其中,參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市有大型超市200家、中型超市400家、小型超市1400 家.為掌握各類超市的營業(yè)情況,現(xiàn)按分層抽樣方法抽取一個容量為100的樣本,應抽取中型超市(
A.70家
B.50家
C.20家
D.10家

查看答案和解析>>

同步練習冊答案