【題目】如圖,在等腰梯形ABCD中,AB=2,CD=4,BC= ,點E,F(xiàn)分別為AD,BC的中點.如果對于常數(shù)λ,在ABCD的四條邊上,有且只有8個不同的點P使得 =λ成立,那么實數(shù)λ的取值范圍為

【答案】(﹣ ,﹣
【解析】解:以DC所在直線為x軸,DC的中垂線為y軸建立平面直角坐標系,
則梯形的高為 =2,∴A(﹣1,2),B(1,2),C(2,0),D(﹣2,0),∴E(﹣ ,1),F(xiàn)( ,1).
①當P在DC上時,設P(x,0)(﹣2≤x≤2),則 =(﹣ ﹣x,1) =( ,1).
于是 =(﹣ ﹣x)( ﹣x)+1=x2 =λ,
∴當λ=﹣ 時,方程有一解,當﹣ <λ≤ 時,λ有兩解;
②當P在AB上時,設P(x,2)(﹣1≤x≤1),則 =(﹣ ﹣x,﹣1) =( ,﹣1).
于是 =(﹣ ﹣x)( ﹣x)+1=x2 =λ,
∴當λ=﹣ 時,方程有一解,當﹣ <λ≤﹣ 時,λ有兩解;
③當P在AD上時,直線AD方程為y=2x+4,
設P(x,2x+4)(﹣2<x<﹣1),則 =(﹣ ﹣x,﹣2x﹣3) =( ,﹣2x﹣3).
于是 =(﹣ ﹣x)( ﹣x)+(﹣2x﹣3)2=5x2+12x+ =λ.
∴當λ=﹣ 或﹣ <λ< 時,方程有一解,當﹣ 時,方程有兩解;
④當P在BC上時,直線BC的方程為y=﹣2x+4,
設P(x,﹣2x+4)(1<x<2),則 =(﹣ ﹣x,2x﹣3) =( ,2x﹣3).
于是 =(﹣ ﹣x)( ﹣x)+(2x﹣3)2=5x2﹣12x+ =λ.
∴當λ=﹣ 或﹣ <λ< 時,方程有一解,當﹣ 時,方程有兩解;
綜上,若使梯形上有8個不同的點P滿足 =λ成立,
則λ的取值范圍是(﹣ , ]∩(﹣ ,﹣ ]∩(﹣ ,﹣ )∩(﹣ ,﹣ )=(﹣ ,﹣ ).
所以答案是:(﹣ ,﹣ ).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是 ( )

A. x<1”“l(fā)og2(x+1)<1”的充分不必要條件

B. 命題x>0,2x>1”的否定是x0≤0,≤1”

C. 命題ab,則ac2bc2的逆命題是真命題

D. 命題a+b≠5,則a≠2b≠3”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲,乙兩人進行圍棋比賽,共比賽2n(n∈N+)局,根據以往比賽勝負的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局數(shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}均為各項都不相等的數(shù)列,Sn為{an}的前n項和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn= ,求a4的值;
(2)若{an}是公比為q的等比數(shù)列,求證:存在實數(shù)λ,使得{bn+λ}為等比數(shù)列;
(3)若{an}的各項都不為零,{bn}是公差為d的等差數(shù)列,求證:a2 , a3 , …,an…成等差數(shù)列的充要條件是d=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲,乙兩人進行圍棋比賽,共比賽2n(n∈N+)局,根據以往比賽勝負的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局數(shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為評估設備生產某種零件的性能,從設備生產零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經計算,樣本的平均值,標準差,以頻率值作為概率的估計值.

(1)為評判一臺設備的性能,從該設備加工的零件中任意抽取一件,記其直徑為,并根據以下不等式進

行評判(表示相應事件的概率);①;②;③.

評判規(guī)則為:若同時滿足上述三個不等式,則設備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設備的性能等級.

(2)將直徑小于等于或直徑大于的零件認為是次品.

。⿵脑O備的生產流水線上隨意抽取2件零件,計算其中次品個數(shù)的數(shù)學期望;

ⅱ)從樣本中隨意抽取2件零件,計算其中次品個數(shù)的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB=2,CD=4,BC= ,點E,F(xiàn)分別為AD,BC的中點.如果對于常數(shù)λ,在ABCD的四條邊上,有且只有8個不同的點P使得 =λ成立,那么實數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,底面是邊長為3的正方形,平面,,與平面所成的角為.

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A,B,C的對邊分別是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求證:△ABC為等腰三角形
(2)若△ABC的面積為8 .且sinB= ,求BC邊上的中線長.

查看答案和解析>>

同步練習冊答案