精英家教網 > 高中數學 > 題目詳情
設數列{an}為公差為2的等差數列,記{an}的前n項和為Sn,令bn=Sn+an,若{bn}為遞增數列,則a1的取值范圍是( 。
A、(-4,+∞)
B、(-3,+∞)
C、(-2,+∞)
D、(0,+∞)
考點:等差數列的性質
專題:計算題,等差數列與等比數列
分析:求出bn=Sn+an=(n+1)a1+(n-1)(n+2),利用{bn}為遞增數列,可得bn+1-bn=a1+(2n+2)>0,即可求出a1的取值范圍.
解答: 解:由題意,bn=Sn+an=(n+1)a1+(n-1)(n+2),
∵{bn}為遞增數列,
∴bn+1-bn=a1+(2n+2)>0,
∴a1>-(2n+2)
∴a1>-4,
故選:A.
點評:本題考查a1的取值范圍,考查數列的單調性,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在正方形ABCD中,E,F分別為邊AD,BC的中點,若沿EF將正方形折成一個二面角A-EF-D使得AD=
2
AE,則異面直線AD與CE所成角的余弦值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax2-4ax-3
(Ⅰ)當a=-1時,求關于x的不等式f(x)>0的解集;
(Ⅱ)若對于任意的x∈R,均有不等式f(x)≤0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2x.
(1)求f(m-1)+1的值;
(2)若x∈[-2,a],求f(x)的值域;
(3)若存在實數t,當x∈[1,m],f(x+t)≤3x恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

以平面直角坐標系xOy的原點O為極點,x軸的非負半軸為極軸建立極坐標系,P點的極坐標為(2
2
4
),曲線C的極坐標方程為ρ=4cosθ.
(1)寫出點P的直角坐標及曲線C的普通方程;
(2)過P的直線l與曲線C交于A,B兩點,若|PA|,|AB|,|PB|成等比數列,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
b
滿足
a
b
,|
a
+
b
|=t|
a
|,若
a
+
b
a
-
b
的夾角為
3
,則t的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

求過點(2,0)且與曲線y=x3相切的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

求數列a,2a2,3a3,4a4,…,nan,…(a為常數,且a≠1,a≠0)的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

平面內動點M(x,y)與兩定點A(-
6
,0),B(
6
,0)的連線的斜率之積為-
1
3
,記動點M的軌跡為C.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)定點F(-2,0),T為直線x=-3上任意一點,過F作TF的垂線交曲線C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當
|TF|
|PQ|
最小時,求點T的坐標.

查看答案和解析>>

同步練習冊答案