(本題滿分12分) 如圖,在正方體中,EF分別是棱的中點(diǎn).

(1)證明;

(2)求所成的角;

(3)證明:面.

方法1(坐標(biāo)法解答前兩問)

(1)證明:以D為原點(diǎn),DA,DC,DD1所在直線為x軸,y軸,z軸建立直角坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為2a,則由條件可得      (1分)

D(0,0,0), A(2a,0,0), C(0,2a,0), D1(0,0,2a), E(2a, 2a, a), F(0, a, 0),A1(2a,0,2a)

=(-2a,0,0),  =(0, a, -2a),

     ∴=-2a×0+0×a+0×(-2a)=0,       ∴,即。                (4分)

(2)解:∵=(0, a, -2a),    

 ∴=0×0+2a×a+a×(-2a)=0           

∴cos<,>==0, 

,的夾角為90°,所以直線AE與D1F所成的角為直角。.(8分)

(3)證明:由(1)、(2)知D1F⊥AD,D1F⊥AE, 而AD∩AE=A,               

  ∴D1F⊥平面AED,         

  ∵D1F平面A1FD1            ∴平面AED⊥平面A1FD1.     (12分)

方法2(綜合法)

證明:因?yàn)锳C1是正方體,所以AD⊥面DC1。 

 又DF1DC1,所以AD⊥D1F.           (4分)

取AB中點(diǎn)G,連結(jié)A1G,F(xiàn)G,               

因?yàn)镕是CD的中點(diǎn),所以GFAD,

又A1D1AD,所以GFA1D1     故四邊形GFD1A1是平行四邊形,A1G∥D1F。

設(shè)A1G與AE相交于H,則∠A1HA是AE與D1F所成的角。   

因?yàn)镋是BB1的中點(diǎn),所以Rt△A1AG≌△ABE, ∠GA1A=∠GAH,從而∠A1HA=90°,

即直線AE與D1F所成的角為直角。                     (8分)

(3)與上面解法相同。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案