正方體ABCD-A1B1C1D1中,E為CC1中點,則異面直線BC1與AE所成角的余弦值為( )
A.
B.
C.
D.
【答案】分析:先通過平移將兩條異面直線平移到同一個起點A,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.
解答:解:如圖,連接D1A,D1E,∠D1AE為異面直線BC1與AE所成角
設邊長為1,則D1A=,D1E=,AE=
利用余弦定理得cos∠D1AE=,
故選D
點評:本題主要考查了異面直線及其所成的角,以及余弦定理的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內;(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值(  )

查看答案和解析>>

同步練習冊答案