精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓 ,右頂點為 ,離心率為 ,直線 與橢圓 相交于不同的兩點 , ,過 的中點 作垂直于 的直線 ,設 與橢圓 相交于不同的兩點 ,且 的中點為
(Ⅰ)求橢圓 的方程;
(Ⅱ)設原點 到直線 的距離為 ,求 的取值范圍.

【答案】解:(Ⅰ) .(Ⅱ)由 ,
, ,則

: ,即
,
, ,


=

所以 = . 令 ,
=
【解析】(Ⅰ)運用離心率公式和a,b,c的關系,解得a,b,進而得到橢圓方程;
(Ⅱ)設出AB的方程,代入橢圓方程,運用韋達定理,可得中點的坐標,再設直線CD的方程,代入橢圓方程,運用韋達定理和弦長公式和點到直線的距離公式,再由二次函數的最值,即可得到范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點,側面PAD⊥底面ABCD.

(1)求證:EF∥平面PAD;

(2)若EF⊥PC,求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了考查兩個變量之間的線性關系,甲、乙兩位同學各自獨立作了次和次試驗,并且利用線性回歸方法,求得回歸直線分別為、,已知兩人得的試驗數據中,變量的數據的平均值都相等,且分別都是、,那么下列說法正確的是( )

A. 直線一定有公共點 B. 必有直線

C. 直線相交,但交點不一定是 D. 必定重合

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax﹣x2﹣lnx存在極值,若這些極值的和大于5+ln2,則實數a的取值范圍為(
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在四棱錐C﹣ABDE中,DB⊥平面ABC,AE∥DB,△ABC是邊長為2的等邊三角形,AE=1,M為AB的中點.
(1)求證:CM⊥EM;
(2)若直線DM與平面ABC所成角的正切值為2,求二面角B﹣CD﹣E的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)工會利用“健步行” 開展健步走積分獎勵活動.會員每天走5 千步可獲積分30分(不足5千步不積分), 每多走2千步再積20分(不足2千步不積分).為了解會員的健步走情況,工會在某天從系統中隨機抽取了 1000名會員,統計了當天他們的步數,并將樣本數據分為,九組,整理得到如圖頻率分布直方圖:

(1)求當天這1000名會員中步數少于11千步的人數;

(2)從當天步數在的會員中按分層抽樣的方式抽取6人,再從這6人中隨機抽取2人,求這2人積分之和不少于200分的概率;

(3)寫出該組數據的中位數(只寫結果).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從萬州二中高二年級文科學生中隨機抽取60名學生,將其月考的政治成績(均為整數)分成六段:后得到如下頻率分布直方圖.

(1)求分數在內的頻率;

(2)用分層抽樣的方法在80分以上(含 80分)的學生中抽取一個容量為6的樣本, 從該樣本中任意選取2人,求其中恰有1 人的分數不低于90分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2cos ,數列{an}中,an=f(n)+f(n+1)(n∈N*),則數列{an}的前100項之和S100=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知點 分別是Δ 的邊 的中點,連接 .現將 沿 折疊至Δ 的位置,連接 .記平面 與平面 的交線為 ,二面角 大小為 .

(1)證明:
(2)證明:
(3)求平面 與平面 所成銳二面角大小.

查看答案和解析>>

同步練習冊答案