【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.
【答案】
(1)解:連接AC、BD交于點O,以O為坐標原點建立如圖所示的空間直角坐標系,則A(0,﹣ ,0),B ( ,0,0),C(0, ,0),D(﹣ ,0,0),P(0,0,2),E(0, ,1)
, , , , .
,
∵AN,AE,AM共面,∴
(2)解:根據(jù)正四棱錐P﹣ABCD的對稱性可知,當PM=PN時,P到面AMEN的距離最大,此時直線PA與平面AMEN所角最大,
,P到面AMEN的距離最小,此時直線PA與平面AMEN所角最。
①由(Ⅰ)知當PM=PN時,λ= , ,
設面AMEN的法向量為 ,
由 , 取
設直線PA與平面AMEN所成角為θ,sinθ=|cos< >|= ,
②當M在B時,因為AB∥面PDC,所以過AB,AE的面與面PDC的交線NE∥AB
設 是面ABEN的法向量,
由 ,可取
sinθ=|cos< >|= .
直線PA與平面AMEN所成角的正弦值的取值范圍為[ , ]
【解析】(1)連接AC、BD交于點O,以O為坐標原點建立如圖所示的空間直角坐標系,則A(0,﹣ ,0),B ( ,0,0),C(0, ,0),D(﹣ ,0,0),P(0,0,2),E(0, ,1)由AN,AE,AM共面, .(2)根據(jù)正四棱錐P﹣ABCD的對稱性可知,當PM=PN時,P到面AMEN的距離最大,此時直線PA與平面AMEN所角最大,P到面AMEN的距離最小,此時直線PA與平面AMEN所角最。孟蛄糠謩e求出求解直線PA與平面AMEN所成角的正弦值.
【考點精析】本題主要考查了空間角的異面直線所成的角的相關(guān)知識點,需要掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)當有是實數(shù)解時,求實數(shù)的取值范圍;
(2)若,對一切恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某幼兒園為訓練孩子的數(shù)字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各兩張,讓孩子從盒子里任取3張卡片,按卡片上的最大數(shù)字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數(shù)字
(1)求取出的3張卡片上的數(shù)字互不相同的概率;
(2)求隨機變量X的分布列及數(shù)學期望;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當a=1時,解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,有兩個獨立的轉(zhuǎn)盤()、().兩個圖中三個扇形區(qū)域的圓心角分別為、、.用這兩個轉(zhuǎn)盤進行玩游戲,規(guī)則是:依次隨機轉(zhuǎn)動兩個轉(zhuǎn)盤再隨機停下(指針固定不會動,當指針恰好落在分界線時,則這次結(jié)果無效,重新開始),記轉(zhuǎn)盤()指針所對的數(shù)為,轉(zhuǎn)盤()指針所對的數(shù)為,(、),求下列概率:
(1);
(2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位長度,所得圖像對應的函數(shù)( )
A. 在區(qū)間上單調(diào)遞減 B. 在區(qū)間上單調(diào)遞增
C. 在區(qū)間上單調(diào)遞減 D. 在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與軸的交點中相鄰兩個交點的距離是,當時取得最小值.
(1)求函數(shù)的解析式;
(2)求函數(shù)在區(qū)間的最大值和最小值;
(3)若函數(shù)的零點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中, , 為線段(含端點)上一個動點,設對于函數(shù),給出以下三個結(jié)論:
①當時,函數(shù)的值域為;
②對于任意的,均有;
③對于任意的,函數(shù)的最大值均為4.
其中所有正確的結(jié)論序號為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com