設△ABC三個角A,B,C的對邊分別為a,b,c,若數(shù)學公式
(1)求角B的大;
(2)若數(shù)學公式,數(shù)學公式=(1,sinA-cosAtanB),求數(shù)學公式的取值范圍.

解:(1)由,即
∵A,C∈(0,π),∴sinC≠0,sinA≠0,∴
∵B∈(0,π),∴B=. (5分)
(2)由(1)知B=,∴,=(1,sinA-cosA),(6分)
于是=cosA+(sinA-cosA)=sin(A+). (10分)
,∴
,即. (12分)
分析:(1)利用正弦定理,結合三角形的內(nèi)角和定理,即可求得角B的大。
(2)利用向量的數(shù)量積公式,結合輔助角公式化簡函數(shù),即可求得的取值范圍.
點評:本題考查正弦定理,考查向量知識的運用,考查三角函數(shù)的化簡,考查學生計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設△ABC三個角A,B,C的對邊分別為a,b,c,向量
p
=(a,2b),
q
=(sinA,1),且
p
q

(Ⅰ)求角B的大小;
(Ⅱ)若△ABC是銳角三角形,
m
=(cosA,cosB),
n
=(1,sinA-cosAtanB),求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,將函數(shù)f(x)向左平移
π
6
個單位后得函數(shù)g(x),設△ABC三個角A、B、C的對邊分別為a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
,
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC三個角A,B,C的對邊分別為a,b,c,若1+
tanB
tanA
=
2c
3
a

(1)求角B的大;
(2)若
m
=(cosA,cosB)
,
n
=(1,sinA-cosAtanB),求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省高三第二次(3月)周測理科數(shù)學試卷(解析版) 題型:解答題

設△ABC三個角A,B,C的對邊分別為a,b,c,向量,,且

(Ⅰ)求角B的大;

(Ⅱ)若△ABC是銳角三角形,,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三第七次階段復習達標檢測理科數(shù)學試卷(解析版) 題型:解答題

設△ABC三個角A,B,C的對邊分別為ab,c,向量,且

 (Ⅰ)求角B的大;

。á颍┤簟ABC是銳角三角形,,求的取值范圍.

 

查看答案和解析>>

同步練習冊答案