14.已知$f(x)=\left\{\begin{array}{l}{2^x}-3,x>0\\ g(x),x<0\end{array}\right.$是奇函數(shù),則f(g(-2))=1.

分析 根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵f(x)是奇函數(shù),
∴g(-2)=f(-2)=-f(2)=-(22-3)=-1,
則f(-1)=-f(1)=-(2-3)=1,
故f(g(-2))=1,
故答案為:1

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知正實(shí)數(shù)x,y滿(mǎn)足$\frac{2}{x}+\frac{1}{y}=1$,若x+2y>m2+2m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-2,4)B.(-4,2)C.(-∞,2]∪[4,+∞)D.(-∞,-4]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.甲、乙、丙三廠(chǎng)聯(lián)營(yíng)生產(chǎn)同一種產(chǎn)品,產(chǎn)品是哪個(gè)廠(chǎng)生產(chǎn)就在產(chǎn)品上蓋哪個(gè)廠(chǎng)的廠(chǎng)名,如果是兩個(gè)廠(chǎng)或三個(gè)廠(chǎng)聯(lián)合生產(chǎn),那么產(chǎn)品上就蓋上兩個(gè)廠(chǎng)或三個(gè)廠(chǎng)的廠(chǎng)名.今有一批產(chǎn)品,發(fā)現(xiàn)蓋過(guò)甲廠(chǎng)、乙廠(chǎng)、丙廠(chǎng)的廠(chǎng)名的產(chǎn)品分別為18件、24件、30件,同時(shí)蓋過(guò)甲、乙廠(chǎng),乙、丙廠(chǎng),丙、甲廠(chǎng)的產(chǎn)品,分別有12件、14件、16件.
①產(chǎn)品上蓋有甲廠(chǎng)廠(chǎng)名沒(méi)有蓋乙廠(chǎng)廠(chǎng)名的產(chǎn)品共有6件;
②這批產(chǎn)品的總數(shù)最多有42件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≥0}\\{x+y-2≤0}\end{array}\right.$,則y-4x的取值范圍是( 。
A.(-∞,4]B.(-∞,7]C.[-$\frac{1}{2}$,4]D.[-$\frac{1}{2}$,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},0≤x≤a}\\{lo{g}_{3}x,x>a}\end{array}\right.$,其中a>0
①若a=3,則f[f(9)]=$\sqrt{2}$;
②若函數(shù)y=f(x)-2有兩個(gè)零點(diǎn),則a的取值范圍是[4,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若函數(shù)f(x)在[m,n](m<n)上的值域恰好為[m,n],則稱(chēng)f(x)為函數(shù)的一個(gè)“等值映射區(qū)間”.下列函數(shù):①y=x2-1;②y=2+log2x;③y=2x-1;④$y=\frac{1}{x-1}$.其中,存在唯一一個(gè)“等值映射區(qū)間”的函數(shù)有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知變換T將平面上的點(diǎn)$({1,\frac{1}{2}}),({0,1})$分別變換為點(diǎn)$({\frac{9}{4},-2}),({-\frac{3}{2},4})$.設(shè)變換T對(duì)應(yīng)的矩陣為M.
(1)求矩陣M;
(2)求矩陣M的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.隨著我國(guó)經(jīng)濟(jì)的飛速發(fā)展,人們的生活水平也同步上升,許許多多的家庭對(duì)于資金的管理都有不同的方式,最新調(diào)查表明,人們對(duì)于投資理財(cái)興趣逐步提高.某投資理財(cái)公司根據(jù)做了大量的數(shù)據(jù)調(diào)查,現(xiàn)有兩種產(chǎn)品投資收益如下:
①投資A產(chǎn)品的收益與投資額的算術(shù)平方根成正比;
②投資B產(chǎn)品的收益與投資額成正比.
公司提供了投資1萬(wàn)元時(shí)兩種產(chǎn)品的收益分別是0.4萬(wàn)元和0.2萬(wàn)元.
(Ⅰ)請(qǐng)寫(xiě)出兩類(lèi)產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(Ⅱ)假如現(xiàn)在你有10萬(wàn)元的資金全部用于投資理財(cái),你該如何分配資金才能讓你的收益最大?最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=ln(x+a)-sinx.給出下列命題:
①當(dāng)a=0時(shí),?x∈(0,e),都有f(x)<0;
②當(dāng)a≥e時(shí),?x∈(0,+∞),都有f(x)>0;
③當(dāng)a=1時(shí),?x0∈(2,+∞),使得f(x0)=0.
其中真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案