自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點P的軌跡方程.
方法一(直接法)
設P(x,y),連接OP,則OP⊥BC,…(2分)
①當x≠0時,kOP•kAP=-1,即
y
x
y
x-4
=-1
,即x2+y2-4x=0.(★)…(8分)
②當x=0時,P點坐標(0,0)是方程(★)的解,…(12分)
∴BC中點P的軌跡方程為x2+y2-4x=0(在已知圓內的部分).…(14分)
方法二(定義法)
由方法一知OP⊥AP,取OA中點M,則M(2,0),|PM|=
1
2
|OA|=2
,
由圓的定義知,∴P的軌跡方程為x2+y2-4x=0(在已知圓內的部分).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓G:經過橢圓的右焦點F及上頂點B,過橢圓外一點(m,0)()傾斜角為的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓Γ:(a>b>0)經過D(2,0),E(1,)兩點.
(1)求橢圓Γ的方程;
(2)若直線與橢圓Γ交于不同兩點A,B,點G是線段AB中點,點O是坐標原點,設射線OG交Γ于點Q,且.
①證明:
②求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一動圓與已知圓O1(x+2)2+y2=1外切,與圓O2(x-2)2+y2=49內切,
(1)求動圓圓心的軌跡方程C;
(2)已知點A(2,3),O(0,0)是否存在平行于OA的直線l與曲線C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線
x2
2
-y2=1
的左、右頂點分別為A1,A2,點P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個動點.
(1)求直線A1P與A2Q交點的軌跡E的方程;
(2)若過點H(0,h)(h>1)的兩條直線l1和l2與軌跡E都只有一個交點,且l1⊥l2,求h的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

點M與點F(3,0)的距離比它到直線x+1=0的距離多2,則點M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l:y=mx+1與曲線C:ax2+y2=2(m、a∈R)交于A、B兩點,O為坐標原點.
(1)當m=0時,有∠AOB=
π
3
,求曲線C的方程;
(2)當實數(shù)a為何值時,對任意m∈R,都有
OA
OB
為定值T?指出T的值;
(3)已知點M(0,-1),當a=-2,m變化時,動點P滿足
MP
=
OA
+
OB
,求動點P的縱坐標的變化范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓=1(a>b>0)的兩頂點為A(a,0),B(0,b),且左焦點為F,△FAB是以角B為直角的直角三角形,則橢圓的離心率e為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2是橢圓+=1的兩焦點,經點F2的的直線交橢圓于點A、B,若|AB|=5,則|AF1|+|BF1|等于(   )
A.11        B.10        C.9       D.8

查看答案和解析>>

同步練習冊答案