9.已知拋物線y2=4x上一點M(x0,2$\sqrt{3}$),則點M到拋物線焦點的距離為4.

分析 把點M(x0,2$\sqrt{3}$)代入拋物線方程,解得x0.利用拋物線的定義可得:點M到拋物線焦點的距離=x0+1.

解答 解:把點M(x0,2$\sqrt{3}$)代入拋物線方程可得:$(2\sqrt{3})^{2}$=4x0,解得x0=3.
∴點M到拋物線焦點的距離=x0+1=4.
故答案為:4.

點評 本題考查了拋物線的定義標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若x∈(0,1),比較函數(shù)f(x)=x2,g(x)=x-2,h(x)=x${\;}^{\frac{1}{2}}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2lnx+$\frac{1}{3}$x3-$\frac{a}{2}$x2+3x.
(1)若a=2,求函數(shù)g(x)=$\frac{f(x)}{x}$的圖象在點(1,g(1))處的切線方程;
(2)若函數(shù)f(x)在($\frac{1}{e}$,e)內(nèi)存在兩個極值點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知函數(shù)f(x)=13-8x+$\sqrt{2}$x2,且f′(x0)=4,求x0的值.
(2)已知函數(shù)f(x)=x2+2xf′(0),求f′(0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等比數(shù)列{an}中,a1=1,公比q=2,設(shè)Tn=$\frac{1}{{a}_{1}{a}_{2}}+\frac{1}{{a}_{2}{a}_{3}}+\frac{1}{{a}_{3}{a}_{4}}+$…+$\frac{1}{{a}_{n}{a}_{n+1}},n∈{N}^{*}$,則下列判斷正確的是(  )
A.$\frac{1}{2}$<Tn≤$\frac{2}{3}$B.Tn>$\frac{1}{2}$C.$\frac{1}{2}$≤Tn<$\frac{2}{3}$.D.Tn≥$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點P(x0,y0)在拋物線W:y2=4x上,且點P到W的準(zhǔn)線的距離與點P到x軸的距離相等,則x0的值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=aexx-2aex-$\frac{1}{2}$x2+x.
(1)求函數(shù)f(x)在(2,f(2))處切線方程;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)對任意x1,x2∈[0,1],f(x2)-f(x1)≤a+1恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.f(x)=$\frac{sinx}{x}$,則f′(π)的值為(  )
A.$-\frac{1}{π}$B.$\frac{1}{π}$C.$-\frac{1}{π^2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=3x2-2x,數(shù)列{an}的前n項和為Sn,點(n,Sn)都在函數(shù)圖象上,令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn為數(shù)列{bn}的前n項和,使得Tn<$\frac{m}{20}$對任意的n∈N*恒成立的最小正整數(shù)m為4.

查看答案和解析>>

同步練習(xí)冊答案