精英家教網 > 高中數學 > 題目詳情

【題目】在如圖的程序框圖表示的算法中,輸入三個實數a,b,c,要求輸出的x是這三個數中最大的數,那么在空白的判斷框中,應該填入(

A.x>c
B.c>x
C.c>b
D.c>a

【答案】B
【解析】解:則流程圖可知a、b、c中的最大數用變量x表示并輸出,
第一個判斷框是判斷x與b的大小
∴第二個判斷框一定是判斷最大值x與c的大小,并將最大數賦給變量x
故第二個判斷框應填入:c>x
故選B.
【考點精析】根據題目的已知條件,利用算法的條件結構的相關知識可以得到問題的答案,需要掌握條件P是否成立而選擇執(zhí)行A框或B框.無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行.一個判斷結構可以有多個判斷框.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖是函數y=f(x)的導函數y=f′(x)的圖象,給出下列命題:
①﹣3是函數y=f(x)的極值點;
②﹣1是函數y=f(x)的最小值點;
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(﹣3,1)上單調遞增.
則正確命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

1求函數的最小正周期和單調減區(qū)間;

2已知的三個內角的對邊分別為,其中,若銳角滿足,且,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+bx+c,其對稱軸為y軸(其中b,c為常數) (Ⅰ)求實數b的值;
(Ⅱ)記函數g(x)=f(x)﹣2,若函數g(x)有兩個不同的零點,求實數c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對任意c∈R成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(x2+ax+a)ex , (a為常數,e為自然對數的底).
(1)當a=0時,求f′(2);
(2)若f(x)在x=0時取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設由f(x)的極大值構成的函數為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x﹣2y+m=0(m為確定的常數)相切,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>1,f(x)=x2﹣ax , 當x∈(﹣1,1)時,均有f(x)< ,則實數a的取值范圍是(
A.(1,2)
B.(1,3]
C.(1,
D.(1,2]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應數據:

x

2

4

5

6

8

y

30

40

50

60

70



(1)畫出散點圖;
(2)求線性回歸方程;
(3)預測當廣告費支出為7百萬元時的銷售額.參考公式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知PA與⊙O相切,A為切點,PBC為割線,弦CDAP,ADBC相交于E點,FCE上一點,且DE2EF·EC.

(1)求證:∠P=∠EDF;

(2)求證:CE·EBEF·EP;

(3)若CEBE=3∶2,DE=6,EF=4,求PA的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知樣本9,10,11,x,y的平均數是10,標準差是 ,則xy=

查看答案和解析>>

同步練習冊答案