【題目】設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足關(guān)系式:3tSn﹣(2t+3)Sn1=3t(t>0,n=2,3,4…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使 ,求數(shù)列{bn}的通項(xiàng)bn;
(3)求和:b1b2﹣b2b3+b3b4﹣b4b5+…+b2n1b2n﹣b2nb2n+1

【答案】
(1)證明:∵a1=S1=1,S2=1+a2,

∴a2=

又3tSn﹣(2t+3)Sn1=3t

∴3tSn1﹣(2t+3)Sn2=3t

①﹣②得:3tan﹣(2t+3)an1=0,

,(n=2,3,…)

∴{an}是一個(gè)首項(xiàng)為1、公比為 的等比數(shù)列


(2)解:∵f(t)= ,

∴bn=f +bn1

∴數(shù)列{bn}是一個(gè)首項(xiàng)為1、公差為 的等差數(shù)列.

∴bn=1+ (n﹣1)=


(3)解:∵bn= ,

∴數(shù)列{b2n1}和{b2n}是首項(xiàng)分別為1和 ,公差均為 的等差數(shù)列,

于是b1b2﹣b2b3+b3b4﹣b4b5+…+b2n1b2n﹣b2nb2n+1

=b2(b1﹣b3)+b4(b3﹣b5)+b6(b5﹣b7)+…+b2n(b2n1+b2n+1

=﹣ (b2+b4+…+b2n

=﹣

=﹣ (2n2+3n)


【解析】(1)通過(guò)3tSn﹣(2t+3)Sn1=3t與3tSn1﹣(2t+3)Sn2=3t作差、整理得 (n=2,3,…),進(jìn)而可得結(jié)論;(2)通過(guò)(1)可知bn=f +bn1 , 即數(shù)列{bn}是一個(gè)首項(xiàng)為1、公差為 的等差數(shù)列,進(jìn)而即得結(jié)論;(3)通過(guò)bn= 可知數(shù)列{b2n﹣/span>1}和{b2n}是首項(xiàng)分別為1和 、公差均為 的等差數(shù)列,并項(xiàng)取公因式,計(jì)算即得結(jié)論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和,掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的傾斜角為且經(jīng)過(guò)點(diǎn),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為.

1)若直線與曲線有公共點(diǎn),求的取值范圍;

(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班20名同學(xué)某次數(shù)學(xué)測(cè)試的成績(jī)可繪制成如下莖葉圖,由于其中部分?jǐn)?shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計(jì)全班同學(xué)的平均成績(jī).

(1)完成頻率分布直方圖;

(2)根據(jù)(1)中的頻率分布直方圖估計(jì)全班同學(xué)的平均成績(jī) (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)設(shè)根據(jù)莖葉圖計(jì)算出的全班的平均成績(jī)?yōu)?/span>,并假設(shè),且各自取得每一個(gè)可能值的機(jī)會(huì)相等,在(2)的條件下,求概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)2的正方形,E,F(xiàn)分別為線段DD1 , BD的中點(diǎn).
(1)求證:EF∥平面ABC1D1;
(2)AA1=2 ,求異面直線EF與BC所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,射線y=x(x≥0)和y=0(x≥0)上分別依次有點(diǎn)A1、A2 , …,An , …,和點(diǎn)B1 , B2 , …,Bn…,其中 , .且 , (n=2,3,4…).

(1)用n表示|OAn|及點(diǎn)An的坐標(biāo);
(2)用n表示|BnBn+1|及點(diǎn)Bn的坐標(biāo);
(3)寫出四邊形AnAn+1Bn+1Bn的面積關(guān)于n的表達(dá)式S(n),并求S(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京市的士收費(fèi)辦法如下:不超過(guò)2公里收7元(即起步價(jià)7元),超過(guò)2公里的里程每公里收2.6元,另每車次超過(guò)2公里收燃油附加費(fèi)1元(不考慮其他因素).相應(yīng)收費(fèi)系統(tǒng)的流程圖如圖所示,則①處應(yīng)填(
A.y=7+2.6x
B.y=8+2.6x
C.y=7+2.6(x﹣2)
D.y=8+2.6(x﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

() 證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log4(ax2﹣4x+a)(a∈R),若f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(
A.[0,2]
B.(2,+∞)
C.(0,2]
D.(﹣2,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案