【題目】設(shè) (,).
(1)若展開(kāi)式中第5項(xiàng)與第7項(xiàng)的系數(shù)之比為3∶8,求k的值;
(2)設(shè)(),且各項(xiàng)系數(shù),,,…,互不相同.現(xiàn)把這個(gè)不同系數(shù)隨機(jī)排成一個(gè)三角形數(shù)陣:第1列1個(gè)數(shù),第2列2個(gè)數(shù),…,第n列n個(gè)數(shù).設(shè)是第i列中的最小數(shù),其中,且i,.記的概率為.求證:.
【答案】(1);(2)證明見(jiàn)解析.
【解析】
(1)利用題目所給展開(kāi)式中第項(xiàng)與第項(xiàng)的系數(shù)之比列方程,解方程求得的值.
(2)利用相互獨(dú)立事件概率乘法公式,求得的表達(dá)式,構(gòu)造數(shù)列,判斷出數(shù)列的單調(diào)性,由此證得不等式成立
(1)因?yàn)樵谡归_(kāi)式中第5項(xiàng)與第7項(xiàng)的系數(shù)之比為3∶8,即,
所以,即,所以,
解得或.
因?yàn)?/span>,所以.
(2)由題意,最小數(shù)在第n列的概率為,
去掉第n列已經(jīng)排好的n個(gè)數(shù),
則余下的個(gè)數(shù)中最小值在第列的概率為,
…………
以此類推,
余下的數(shù)中最小數(shù)在第2列的概率為,
所以.
由于,所以.
設(shè),
所以.
記,所以,
所以是遞增數(shù)列,所以;是遞增數(shù)列,所以,
所以,所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)生產(chǎn)企業(yè)為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到單價(jià)(單位:千元)與銷(xiāo)量(單位:百件)的關(guān)系如下表所示:
單價(jià)(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
銷(xiāo)量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷(xiāo)量(百件)關(guān)于試銷(xiāo)單價(jià)(千元)的線性回歸方程;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷(xiāo)量的估計(jì)值,當(dāng)銷(xiāo)售數(shù)據(jù)對(duì)應(yīng)的殘差滿足時(shí),則稱為一個(gè)“好數(shù)據(jù)”,現(xiàn)從5個(gè)銷(xiāo)售數(shù)據(jù)中任取3個(gè),求其中“好數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)為拋物線外一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,,切點(diǎn)分別為,.
(Ⅰ)若點(diǎn)為,求直線的方程;
(Ⅱ)若點(diǎn)為圓上的點(diǎn),記兩切線,的斜率分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上兩定點(diǎn),動(dòng)點(diǎn)滿(為常數(shù)).
(Ⅰ)說(shuō)明動(dòng)點(diǎn)的軌跡(不需要求出軌跡方程);
(Ⅱ)當(dāng)時(shí),動(dòng)點(diǎn)的軌跡為曲線,過(guò)的直線與交于兩點(diǎn),已知點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在市中心有一矩形空地.市政府欲將它改造成綠化景觀帶,具體方案如下:在邊上分別取點(diǎn)M,N,在三角形內(nèi)建造假山,在以為直徑的半圓內(nèi)建造噴泉,其余區(qū)域栽種各種觀賞類植物.
(1)若假山區(qū)域面積為,求噴泉區(qū)域面積的最小值;
(2)若,求假山區(qū)域面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn),點(diǎn)是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).
(1)寫(xiě)出曲線的參數(shù)方程,并求出點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線的交點(diǎn)為,若線段的中點(diǎn)為,求線段長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某石雕構(gòu)件的三視圖如圖所示,該石雕構(gòu)件最中間的鏤空部分是一個(gè)獨(dú)特的幾何體——牟合方蓋(在一個(gè)立方體內(nèi)作兩個(gè)互相垂直的內(nèi)切圓柱,其相交的部分),其體積(其中為最大截面圓的直徑).若三視圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,則該石雕構(gòu)件的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把方程表示的曲線作為函數(shù)的圖象,則下列結(jié)論正確的是( )
①在R上單調(diào)遞減
②的圖像關(guān)于原點(diǎn)對(duì)稱
③的圖象上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為3
④函數(shù)不存在零點(diǎn)
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計(jì)圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時(shí)要求學(xué)生從小數(shù)點(diǎn)后的6位數(shù)字1,4,1,5,9,2中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com