【題目】如圖,已知平面內(nèi)一動點(diǎn)到兩個(gè)定點(diǎn)、的距離之和為,線段的長為.
(1)求動點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,線段的垂直平分線為.
①求的面積的最大值;
②軌跡上是否存在除、外的兩點(diǎn)、關(guān)于直線對稱,請說明理由.
【答案】(1);(2)①;②見詳解.
【解析】
(1)根據(jù)題意,得到動點(diǎn)的軌跡是橢圓,以線段的中點(diǎn)為坐標(biāo)原點(diǎn),以所在直線為軸建立平面直角坐標(biāo)系,即可得出軌跡方程;
(2)①根據(jù)橢圓的特征,得到為橢圓的上頂點(diǎn)時(shí),的高最大,進(jìn)而可求出結(jié)果;
②當(dāng)時(shí),根據(jù)橢圓的對稱性,即可得出存在除、外的兩點(diǎn)、關(guān)于直線對稱;當(dāng)與不垂直時(shí),假設(shè)存在這樣的兩個(gè)不同的點(diǎn)、,設(shè),, ,的中點(diǎn)為,,根據(jù)推出,同理得到,得到,結(jié)合條件推出矛盾,即可得出結(jié)論.
(1)因?yàn)?/span>,
所以動點(diǎn)的軌跡是以、為焦點(diǎn),以為長軸的橢圓;
以線段的中點(diǎn)為坐標(biāo)原點(diǎn),以所在直線為軸建立平面直角坐標(biāo)系,
因此,動點(diǎn)的軌跡的方程為;
(2)①由題意,,當(dāng)為橢圓的上頂點(diǎn)時(shí),的高最大,此時(shí)面積最大;
所以的面積的最大值為;
②當(dāng)時(shí),線段的垂直平分線為軸,根據(jù)橢圓的對稱性可得:存在除、外的兩點(diǎn)、關(guān)于直線對稱,
當(dāng)與不垂直時(shí),假設(shè)存在這樣的兩個(gè)不同的點(diǎn)、,
設(shè),, ,的中點(diǎn)為,,
由,在橢圓上,
則,兩式作差得:,
所以,即;
同理,,
因?yàn)橹本為線段,的垂直平分線,所以,
即三點(diǎn)共線,這與與不垂直矛盾,因此假設(shè)不成立,
所以與不垂直時(shí),不存在除、外的兩點(diǎn)、關(guān)于直線對稱.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根、(),稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知為給定實(shí)數(shù),求的表達(dá)式;
(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù),的單調(diào)性,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由9個(gè)正數(shù)組成的矩陣中,每行中三個(gè)數(shù)成等差數(shù)列,且、、成等比數(shù)列,給出下列判斷:① 第2列中,、、必成等比數(shù)列;② 第1列中的、、不一定成等比數(shù)列;③ ;④ 若9個(gè)數(shù)之和等于9,則;其中正確的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P—ABCD中,PAB為正三角形,四邊形ABCD為炬形,平面PAB⊥平面ABCD.AB=2AD,M,N分別為PB,PC中點(diǎn).
(1)求證:MN//平面PAD;
(2)求二面角B—AM—C的大小;
(3)在BC上是否存在點(diǎn)E,使得EN⊥平面AMV?若存在,求的值:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點(diǎn)的個(gè)數(shù);
(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月1日起我國實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用 ②子女教育費(fèi)用 ③繼續(xù)教育費(fèi)用 ④大病醫(yī)療費(fèi)用等,其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月共扣除2000元 ②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過3000元的部分 | 3% |
2 | 超過3000元至12000元的部分 | 10% |
3 | 超過12000元至25000元的部分 | 20% |
現(xiàn)有李某月收入18000元,膝下有兩名子女,需要贍養(yǎng)老人,(除此之外,無其它專項(xiàng)附加扣除,專項(xiàng)附加扣除均按標(biāo)準(zhǔn)的100%扣除),則李某月應(yīng)繳納的個(gè)稅金額為( )
A.590元B.690元C.790元D.890元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com