【題目】據統(tǒng)計,某5家鮮花店今年4月的銷售額和利潤額資料如下表:
鮮花店名稱 | A | B | C | D | E |
銷售額x(千元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(千元) | 2 | 3 | 3 | 4 | 5 |
(1)用最小二乘法計算利潤額y關于銷售額x的回歸直線方程=x+;
(2)如果某家鮮花店的銷售額為8千元時,利用(1)的結論估計這家鮮花店的利潤額是多少.
參考公式:回歸方程中斜率和截距的最小二乘法估計值公式分別為
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在一個實數(shù),使得成立,則稱為函數(shù)的一個不動點,設函數(shù)(, 為自然對數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿足,且當時, .若存在,且為函數(shù)的一個不動點,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果的定義域為,對于定義域內的任意,存在實數(shù)使得成立,則稱此函數(shù)具有“性質”.給出下列命題:
①函數(shù)具有“性質”;
②若奇函數(shù)具有“性質”,且,則;
③若函數(shù)具有“性質”,圖象關于點成中心對稱,且在上單調遞減,則在上單調遞減,在上單調遞增;
④若不恒為零的函數(shù)同時具有“性質”和“性質”,且函數(shù)對,都有 成立,則函數(shù)是周期函數(shù).
其中正確的是__________(寫出所有正確命題的編號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.
(1)求恰好摸出1個黑球和1個紅球的概率:
(2)求至少摸出1個黑球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x+1+|3-x|,x≥-1.
(1)求不等式f(x)≤6的解集;
(2)若f(x)的最小值為n,正數(shù)a,b滿足2nab=a+2b,求2a+b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是某市11月1日至14日的空氣質量指數(shù)趨勢圖,空氣質量指數(shù)(AQI)小于100表示空氣質量優(yōu)良,空氣質量指數(shù)大于200表示空氣重度污染,某人隨機選擇11月1日至11月12日中的某一天到達該市,并停留3天.
(1)求此人到達當日空氣重度污染的概率;
(2)設X是此人停留期間空氣重度污染的天數(shù),求X的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的公差大于0,且,是方程的兩根,數(shù)列的前項和為,且.
(1)求數(shù)列、的通項公式;
(2)設數(shù)列的前項和為,試比較與的大小,并用數(shù)學歸納法給予證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com