【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求證:AB⊥PC;
(2)求側(cè)面BPC與側(cè)面DPC所成的銳二面角的余弦值.

【答案】
(1)證明:取AB的中點(diǎn)O,連結(jié)PO,CO,AC,

∵△APB為等腰三角形,∴PO⊥AB,

又∵四邊形ABCD是菱形,∠BCD=120°,

∴△ABC是等邊三角形,∴CO⊥AB,

又OC∩PO=O,∴AB⊥平面PCO,

又PC平面PCO,∴AB⊥PC


(2)解:∵四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP= ,

∴OP= =1,OC= = ,∴PC2=OP2+OC2,∴OP⊥OC,

以O(shè)為原點(diǎn),OC為x軸,OB為y軸,OP為z軸,建立空間直角坐標(biāo)系,

則B(0,1,0),C( ,0,0),P(0,0,1),D( ),

=( ), =(0,﹣1,1), =( ,﹣1),

設(shè) =(x,y,z)是平面BPC的一個(gè)法向量,

,取x=1,得 =(1, ),

設(shè)平面DPC的一個(gè)法向量 =(a,b,c),

,取a=1,得 =(1,0, ),

∴cos< >= = = ,

∴側(cè)面BPC與側(cè)面DPC所成的銳二面角的余弦值為


【解析】(1)取AB的中點(diǎn)O,連結(jié)PO,CO,AC,推導(dǎo)出PO⊥AB,CO⊥AB,從而AB⊥平面PCO,由此能證明AB⊥PC.(2)以O(shè)為原點(diǎn),OC為x軸,OB為y軸,OP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出側(cè)面BPC與側(cè)面DPC所成的銳二面角的余弦值.
【考點(diǎn)精析】關(guān)于本題考查的空間中直線與直線之間的位置關(guān)系,需要了解相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知在平面直角坐標(biāo)系,的參數(shù)方程為 (為參數(shù))以軸為極軸 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過點(diǎn)的圓心.

(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;

(2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩運(yùn)動(dòng)員進(jìn)行射擊訓(xùn)練.已知他們擊中的環(huán)數(shù)都穩(wěn)定在,環(huán),且每次射擊擊中與否互不影響甲、乙射擊命中環(huán)數(shù)的概率如下表:

若甲、乙兩運(yùn)動(dòng)員各射擊次,求甲運(yùn)動(dòng)員擊中環(huán)且乙運(yùn)動(dòng)員擊中環(huán)的概率.

若甲射擊次,用表示這次射擊擊中環(huán)以上(含環(huán))的次數(shù),求隨機(jī)變量的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點(diǎn),BC=AC=CC1 , 則CN與AM所成角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,過點(diǎn)的直線交拋物線位于第一象限)兩點(diǎn).

(1)若直線的斜率為,過點(diǎn)分別作直線的垂線,垂足分別為,求四邊形的面積;

(2)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓.

(1)若點(diǎn)為圓上的動(dòng)點(diǎn),求線段中點(diǎn)所形成的曲線的方程;

(2)若直線過點(diǎn),且被(1)中曲線截得的弦長為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E是棱PD的中點(diǎn),點(diǎn)F是PC的中點(diǎn)F.

(1)證明:PB∥平面AEC;
(2)若ABCD為正方形,探究在什么條件下,二面角C﹣AF﹣D大小為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案