點P(6,-4)與圓上任一點連線的中點軌跡方程是
A.B.
C.D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.
(Ⅰ)求M點的軌跡T的方程;
(Ⅱ)已知、,試探究是否存在這樣的點是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的離心率. 直線)與曲線交于不同的兩點,以線段為直徑作圓,圓心為
(1) 求橢圓的方程;
(2) 若圓軸相交于不同的兩點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點(4,)到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線相交于不同的兩點A、B,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給出下列曲線:
 ;②  ;③  ;④ .
其中與直線有公共點的所有曲線是             (    )
A.①③B.②④C.①②③D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

圓錐曲線上任意兩點連成的線段稱為弦。若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦。已知點、是圓錐曲線C上不與頂點重合的任意兩點,是垂直于軸的一條垂軸弦,直線分別交軸于點和點

(1)試用的代數(shù)式分別表示;
(2)若C的方程為(如圖),求證:是與和點位置無關的定值;
(3)請選定一條除橢圓外的圓錐曲線C,試探究經(jīng)過某種四則運算(加、減、乘、除),其結(jié)果是否是與和點位置無關的定值,寫出你的研究結(jié)論并證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

( 本小題10分)
k代表實數(shù),討論方程所表示的曲線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點M與兩個定點O(0,0),A(3,0)的距離的比為,則點M的軌跡方程為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,平面三已知點是,映射平面上的點對應到另一個平面直角坐標系上的點,則當點沿著折線運動時,在映射的作用下,動點的軌跡是

            
A.                 B.            C.                 D.

查看答案和解析>>

同步練習冊答案