一種電腦屏幕保護畫面,只有符號“○”和“×”隨機地反復出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為,出現(xiàn)“×”的概率為.若第次出現(xiàn)“○”,則a=1;出現(xiàn)“×”,則a=.令S=a+a+…+a. 學科網(wǎng)

(1)當時,求S2的概率;

(2)當,時,求S=2且S≥0(i=1,2,3,4)的概率.

P=1.


解析:

(1)∵先求=2的概率,則在6次變化中,出現(xiàn)“○”有4次,出現(xiàn)“ ×”有2次.

=2的概率為2的概率為P=1.

 (2)當時,即前八秒出現(xiàn)“○”5次和“×”3次,又已知Si≥0(i=1,2,3,4),

若第一、三秒出現(xiàn)“○”,則其余六秒可任意出現(xiàn)“○”3次;

若第一、二秒出現(xiàn)“○”,第三秒出現(xiàn)“×”,則后五秒可任出現(xiàn)“○”3次.

故此時的概率為P=(或).

【說明】湖北省黃岡中學2009屆高三2月月考數(shù)學試題(理)學科網(wǎng)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一種電腦屏幕保護畫面,只有符號“○”和“×”隨機地反復出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為p,出現(xiàn)“×”的概率為q,若第k次出現(xiàn)“○”,則記ak=1;出現(xiàn)“×”,則記ak=-1,令Sn=a1+a2+••+an
(I)當p=q=
1
2
時,記ξ=|S3|,求ξ的分布列及數(shù)學期望;
(II)當p=
1
3
,q=
2
3
時,求S8=2且Si≥0(i=1,2,3,4)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一種電腦屏幕保護畫面,只有符號“○”和“×”隨機地反復出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”與出現(xiàn)“×”的概率均為
12
,若第k次出現(xiàn)“○”,則ak=1;出現(xiàn)“×”,則ak=-1.令Sn=a1+a2+…+an(n∈N*).
(I)求S6=2的概率;
(II)求S8=2且Si≥0(i=1,2,3,4)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一種電腦屏幕保護畫面,只有符號“○”和“×”隨機地反復出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為p,出現(xiàn)“×”的概率為q.若第k次出現(xiàn)“○”,則ak=1;出現(xiàn)“×”,則ak=-1.令Sn=a1+a2+…+an(n∈N*).
(1)當p=q=
1
2
時,求S6≠2的概率;
(2)當p=
1
3
,q=
2
3
時,求S8=2且Si≥0(i=1,2,3,4)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一種電腦屏幕保護畫面,只有符號“○”和“×”,隨機地反復地出,每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”和“×”的概率都為
1
2
,若第k次出現(xiàn)“○”,則記ak=1,出現(xiàn)“×”,則記ak=-1,令sn=a1+a2+…+an,則S6≠2的概率為
49
64
49
64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一種電腦屏幕保護畫面,只有符號“○”和“×”隨機地反復出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為p,出現(xiàn)“×”的概率為q,若第k次出現(xiàn)“○”,則記;出現(xiàn)“×”,則記,令

   (I)當時,記,求的分布列及數(shù)學期望;

(II)當時,求的概率.

查看答案和解析>>

同步練習冊答案