從某校高三年級(jí)800名學(xué)生中隨機(jī)抽取50名測(cè)量身高,據(jù)測(cè)量,被抽取的學(xué)生的身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],如圖是按上述分組方法得到的頻率分布直方圖:
(1)求出如圖中第七組所代表的矩形的縱坐標(biāo);
(2)試估計(jì)這所學(xué)校高三年級(jí)800名學(xué)生中身高在180cm以上(含180cm)的人數(shù)為多少;
(3)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)?
考點(diǎn):頻率分布直方圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計(jì)
分析:(1)根據(jù)頻率分布直方圖,求出第七組所代表矩形的縱坐標(biāo)即
頻率
組距
;
(2)求出這所學(xué)校高三年級(jí)800名學(xué)生中身高在180cm以上(含180cm)的頻率,即得頻數(shù)
(3)根據(jù)頻率分布直方圖,求出樣本數(shù)據(jù)的中位數(shù).
解答: 解:(1)根據(jù)頻率分布直方圖得,
第七組所代表的矩形的縱坐標(biāo)是
(1-0.008×5-0.016×5-0.04×5-0.04×5-0.06×5-0.016×5-0.008×5)÷5=0.0264;
(2)這所學(xué)校高三年級(jí)800名學(xué)生中身高在180cm以上(含180cm)的頻率是
0.016×5+0.0264×5+0.008×5=0.216,
∴這所學(xué)校高三年級(jí)800名學(xué)生中身高在180cm以上(含180cm)的人數(shù)為
800×0.216=172.8≈173;
(3)根據(jù)頻率分布直方圖,得;
∵0.008×5+0.016×5+0.04×5+0.04×5=0.484<0.5,
0.008×5+0.016×5+0.04×5+0.04×5+0.06×5=0.784>0.5,
∴令0.008×5+0.016×5+0.04×5+0.04×5+0.06x=0.5,
解得x≈0.27;
∴樣本數(shù)據(jù)的中位數(shù)為175+0.27=175.27.
點(diǎn)評(píng):本題考查了頻率分布直方圖的應(yīng)用問題,解題時(shí)應(yīng)靈活應(yīng)用頻率分布直方圖進(jìn)行簡(jiǎn)單的計(jì)算,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,半長(zhǎng)軸長(zhǎng)的平方與半焦距相等,過橢圓的左焦點(diǎn)F1作傾斜角為45°的直線l與橢圓交于A、B兩點(diǎn),設(shè)M為A、B的中點(diǎn),且直線L與直線OM的夾角余弦值為
5
5
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan
θ
2
=3,則
1-cosθ+sinθ
1+cosθ+sinθ
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,…,7這7個(gè)自然數(shù)中,任取3個(gè)不同的數(shù).
(1)求這3個(gè)數(shù)中至少有1個(gè)是偶數(shù)的概率;
(2)設(shè)ξ為這3個(gè)數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時(shí)ξ的值是2).求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,G、H、M、N分別是正三棱柱的頂點(diǎn)或所在棱的中點(diǎn),則表示直線GH,MN是異面直線的圖形有
 
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C:x=
-y2-2y
與直線l:x-y-m=0有兩個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

趙劍計(jì)劃在一周五天內(nèi)安排三天進(jìn)行油畫訓(xùn)練,其中周一和周四至少安排一天,求不同的安排方法種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}與{bn}滿足bn=2an(n∈N*),數(shù)列{bn}是等比數(shù)列,且b1+b5=68,a2+a4=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}是遞增數(shù)列,設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c在區(qū)間[-2,2]上的最大值、最小值分別為M、m,集合A={x|f(x)-x=0}.
(1)若f(0)=2,且A={1,2},求a,b,c;
(2)在(1)的條件下,求M和m的值;
(3)若A={2},且a≥1,記g(a)=M-m,求g(a)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案