已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,現(xiàn)給出如下結(jié)論:
①f(0)•f(1)>0;②f(0)•f(1)<0;③f(0)•f(3)>0;④;f(0)•f(3)<0;
⑤f(x)的極值為1和3.其中正確命題的序號為
 
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的綜合應用
分析:根據(jù)f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,確定函數(shù)的極值點及a、b、c的大小關(guān)系,由此可得結(jié)論
解答: 解:求導函數(shù)可得f′(x)=3x2-12x+9=3(x-1)(x-3)
∴當1<x<3時,f'(x)<0;當x<1,或x>3時,f'(x)>0
所以f(x)的單調(diào)遞增區(qū)間為(-∞,1)和(3,+∞)單調(diào)遞減區(qū)間為(1,3)
∴1和3是函數(shù)的極值點,不是極值,故⑤錯誤,
所以f(x)極大值=f(1)=1-6+9-abc=4-abc,
f(x)極小值=f(3)=27-54+27-abc=-abc
要使f(x)=0有三個解a、b、c,那么結(jié)合函數(shù)f(x)草圖可知:
a<1<b<3<c
及函數(shù)有個零點x=b在1~3之間,
所以f(1)=4-abc>0,且f(3)=-abc<0
所以0<abc<4
∵f(0)=-abc
∴f(0)<0
∴f(0)f(1)<0,f(0)f(3)>0,故②③正確.
故答案為:②③.
點評:本題考查函數(shù)的零點、極值點,解不等式,綜合性強,利用數(shù)形結(jié)合可以使本題直觀.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求證:函數(shù)f(x)=x+
1
x
在區(qū)間[1,+∞)上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-
2
3

(1)求證:f(x)在R上是減函數(shù).
(2)求函數(shù)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(q+p)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+…+
f2(1007)+f(2014)
f(2013)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個直角三角形的兩條直角邊長為a,b,求該直角三角形內(nèi)切圓的面積,試設(shè)計求解該問題的算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,且其左視圖是一個等邊三角形,則這個幾何體的體積為( 。
A、12+
2
B、36+
2
C、18+
4
D、6+
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是一個公差大于零的等差數(shù)列,且a3a6=55,a2+a7=16,數(shù)列{bn}的前n項和為Sn,且Sn=2bn-2.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=
an
bn
,求{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知∠A=150°,a=3,則其外接圓的半徑R的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

作出函數(shù)f(x)=2|x|的圖象,并根據(jù)圖象判斷f(
x1+x2
2
)與
f(x1)+f(x2)
2
的大。

查看答案和解析>>

同步練習冊答案