(本小題滿分12分)設雙曲線的兩個焦點分別為,離心率為2.
(Ⅰ)求此雙曲線的漸近線的方程;
(Ⅱ)若、分別為上的點,且,求線段的中點的軌跡方程,并說明軌跡是什么曲線;
(Ⅰ),漸近線方程為;(Ⅱ)
則M的軌跡是中心在原點,焦點在x軸上,長軸長為,短軸長為的橢圓。
解析試題分析:(Ⅰ)利用離心率為2,結合c2=a2+3,可求a,c的值,從而可求雙曲線方程,即可求得漸近線方程;
(Ⅱ)設A(x1,y1),B(x2,y2),AB的中點M(x,y),利用2|AB|=5|F1F2|,建立方程,根據A、B分別為l1、l2上的點,化簡可得軌跡方程及對應的曲線.
解:(Ⅰ)
,漸近線方程為
(Ⅱ)設,AB的中點
則M的軌跡是中心在原點,焦點在x軸上,長軸長為,短軸長為的橢圓。
考點:本試題主要考查了軌跡方程的求解,考查雙曲線的幾何性質,考查學生的計算能力,屬于中檔題。
點評:解決該試題的關鍵是能理解雙曲線的性質熟練的得到a,b,的值,注意焦點位置對于漸近線的影響。同時能利用坐標關系式得到軌跡方程。
科目:高中數學 來源: 題型:解答題
分別是橢圓:+=1()的左、右焦點,是橢圓的上頂點,是直線與橢圓的另一個交點,=60°.
(1)求橢圓的離心率;
(2)已知△的面積為40,求a, b 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)(理科)已知橢圓,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構成等邊三角形.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,交直線于點,且,,
求證:為定值,并計算出該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)如圖,橢圓:的左焦點為,右焦點為,離心率.過的直線交橢圓于兩點,且△的周長為.
(Ⅰ)求橢圓的方程.
(Ⅱ)設動直線:與橢圓有且只有一個公共點,且與直線相交于點.試探究:在坐標平面內是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓上的動點到焦點距離的最小值為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(2,0)的直線與橢圓相交于兩點,為橢圓上一點, 且滿足
(為坐標原點),當 時,求實數的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com