精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)設雙曲線的兩個焦點分別為,離心率為2.
(Ⅰ)求此雙曲線的漸近線的方程;
(Ⅱ)若、分別為上的點,且,求線段的中點的軌跡方程,并說明軌跡是什么曲線;

(Ⅰ),漸近線方程為;(Ⅱ)
則M的軌跡是中心在原點,焦點在x軸上,長軸長為,短軸長為的橢圓。

解析試題分析:(Ⅰ)利用離心率為2,結合c2=a2+3,可求a,c的值,從而可求雙曲線方程,即可求得漸近線方程;
(Ⅱ)設A(x1,y1),B(x2,y2),AB的中點M(x,y),利用2|AB|=5|F1F2|,建立方程,根據A、B分別為l1、l2上的點,化簡可得軌跡方程及對應的曲線.
解:(Ⅰ)

,漸近線方程為
(Ⅱ)設,AB的中點


則M的軌跡是中心在原點,焦點在x軸上,長軸長為,短軸長為的橢圓。
考點:本試題主要考查了軌跡方程的求解,考查雙曲線的幾何性質,考查學生的計算能力,屬于中檔題。
點評:解決該試題的關鍵是能理解雙曲線的性質熟練的得到a,b,的值,注意焦點位置對于漸近線的影響。同時能利用坐標關系式得到軌跡方程。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

分別是橢圓+=1()的左、右焦點,是橢圓的上頂點,是直線與橢圓的另一個交點,=60°.
(1)求橢圓的離心率;
(2)已知△的面積為40,求a, b 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知橢圓,過點(m,0)作圓的切線交橢圓G于A,B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)將表示為m的函數,并求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)(理科)已知橢圓,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構成等邊三角形.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,交直線于點,且,,
求證:為定值,并計算出該定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,橢圓,若的離心率為,如果相交于兩點,且線段恰為圓的直徑,求直線與橢圓的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分) 已知拋物線與直線相交于兩點.
(1)求證:以為直徑的圓過坐標系的原點;(2)當的面積等于時,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)如圖,橢圓的左焦點為,右焦點為,離心率.過的直線交橢圓于兩點,且△的周長為

(Ⅰ)求橢圓的方程.
(Ⅱ)設動直線與橢圓有且只有一個公共點,且與直線相交于點.試探究:在坐標平面內是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓上的動點到焦點距離的最小值為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(2,0)的直線與橢圓相交于兩點,為橢圓上一點, 且滿足
為坐標原點),當 時,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線C:2x2-y2=2與點P(1,2).求過點P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個交點;

查看答案和解析>>

同步練習冊答案