過點(diǎn)(0,1)的直線與x2+y2=4相交于A、B兩點(diǎn),則|AB|的最小值為______.
∵x2+y2=4的圓心O(0,0),半徑r=2,
∴點(diǎn)(0,1)到圓心O(0,0)的距離d=1,
∴點(diǎn)(0,1)在圓內(nèi).
如圖,|AB|最小時(shí),弦心距最大為1,
∴|AB|min=2
22-12
=2
3

故答案為:2
3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C過點(diǎn)P(1,1),且與圓M:(x+2)2+(x+2)2=r2(r>0)2關(guān)于直線x+y+2=0對(duì)稱.
⑴求圓C的方程;
⑵設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求的最小值;
⑶過點(diǎn)P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線ax+y-1=0與直線2x+3y-2=0垂直,則實(shí)數(shù)a的值為( 。
A.
2
3
B.-1C.-2D.-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2).
(1)求直線AB的解析式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩直線l1:x+8y+7=0和l2:2x+y-1=0.
(1)求l1與l2交點(diǎn)坐標(biāo);
(2)求過l1與l2交點(diǎn)且與直線x+y+1=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線l過定點(diǎn)P(0,1),且與直線l1:x-3y+10=0,l2:2x+y-8=0分別交于A、B兩點(diǎn)、若線段AB的中點(diǎn)為P,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三角形的頂點(diǎn)是A(-5,0)、B(3,-3)、C(0,2),
(1)求直線AB的方程;
(2)求△ABC的面積;
(3)若過點(diǎn)C直線l與線段AB相交,求直線l的斜率k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知P(a,b),Q(c,d)是直線Ax+By+C=0(AB≠0)上定點(diǎn),M是平面上的動(dòng)點(diǎn),則|MP|+|MQ|的最小值是(  )
A.|
a-c
A
|
A2-B2
B.|a-c|
A2+B2
C.|
b-d
A
|
A2+B2
D.|b-d|
A2+B2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線l過點(diǎn)(-2,0),當(dāng)直線l與圓x2+y2=2x有兩個(gè)交點(diǎn)時(shí),其斜率k的取值范圍是(  )
A.(-2,2)B.(-,)
C.(-,)D.(-,)

查看答案和解析>>

同步練習(xí)冊(cè)答案