已知四棱錐P-ABCD中,平面PAD⊥平面ABCD,平面PCD⊥平面ABCD,E為PB上任意一點(diǎn),O為菱形對角線的交點(diǎn),如圖所示.
(1)求證:平面EAC⊥平面PBD;
(2)若∠BAD=60°,當(dāng)四棱錐的體積被平面EAC分成3:1兩部分時(shí),若二面角B-AE-C的大小為45°,求PD:AD的值.
分析:(I)根據(jù)PD⊥平面ABCD,得到AC⊥PD,結(jié)合菱形ABCD中AC⊥BD,利用線面垂直判定定理,可得AC⊥平面PBD,從而得到平面EAC⊥平面PBD;
(II)連接OE,由錐體的體積公式結(jié)合VE-ABC=
1
4
VP-ABCD,得到E為PB的中點(diǎn).由PD⊥面ABCD且PD∥OE,得到OE⊥面ABCD,證出平面EAC⊥平面ABCD,進(jìn)而得到BO⊥平面EAC,所以BO⊥AE.過點(diǎn)O作OF⊥AE于點(diǎn)F,連接OF,證出AE⊥BF,由二面角平面角的定義得∠BFO為二面角B-AE-C的平面角,即∠BFO=45°.分別在Rt△BOF和Rt△AOE中利用等積關(guān)系的三角函數(shù)定義,算出OE=
6
4
AD,由此即可得到PD:AD的值.
解答:解:(1)∵PD⊥平面ABCD,AC?平面ABCD,∴AC⊥PD.
∵菱形ABCD中,AC⊥BD,PD∩BD=D,
∴AC⊥平面PBD.
又∵AC?平面EAC,平面EAC⊥平面PBD;
(2)連接OE,
∵四棱錐的體積被平面EAC分成3:1兩部分,∴VE-ABC=
1
4
VP-ABCD,
∵△ABC的面積等于菱形ABCD面積的一半,
∴E到平面ABCD的距離等于P到平面ABCD距離的
1
2
,可得E為PB的中點(diǎn).
∵PD⊥平面ABCD,∴OE⊥平面ABCD,
又∵OE?平面EAC,∴平面EAC⊥平面ABCD,
∵平面EAC∩平面ABCD=AC,BO?平面ABCD,BO⊥AC
∴BO⊥平面EAC,可得BO⊥AE
過點(diǎn)O作OF⊥AE于點(diǎn)F,連接OF,則
∵AE⊥BO,BO、OF是平面BOF內(nèi)的相交直線,
∴AE⊥平面BOF,可得AE⊥BF
因此,∠BFO為二面角B-AE-C的平面角,即∠BFO=45°
設(shè)AD=BD=a,則OB=
1
2
a,OA=
3
2
a,
在Rt△BOF中,tan∠BFO=
OB
OF
=
1
2
a
OD
=1,可得OF=
1
2
a

Rt△AOE中利用等積關(guān)系,可得OA•OE=OF•AE
3
2
a•OE=
1
2
a•
3
4
a2+OE2
,解之得OE=
6
4
a

∴PD=2OE=
6
2
a
,可得PD:AD=
6
:2,即PD:AD的值為
6
2
點(diǎn)評:題給出一個(gè)特殊四棱錐,要我們證明面面垂直,并在已知二面角大小的情況下求線段的比值,著重考查了空間垂直位置關(guān)系的判斷與證明和二面角平面角的求法等知識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為
10
5
,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點(diǎn),AE與BD交于O點(diǎn),AB=BC=2CD=2,BD⊥PE.
(1)求證:平面PAE⊥平面ABCD; 
(2)若直線PA與平面ABCD所成角的正切值為
5
2
,PO=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點(diǎn),PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案