等差數(shù)列{an}中,Sn是其前n項和,已知a4-a2=4,S2n=100,則a12-a22+a32-a42+…+a2n-12-a2n2=
 
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用a4-a2=4,可得d=2,再結(jié)合平方差公式,即可得出結(jié)論.
解答: 解:設(shè)公差為d,則
∵a4-a2=4,∴d=2,
∵S2n=100,
∴a12-a22+a32-a42+…+a2n-12-a2n2=-2S2n=-200,
故答案為:-200.
點評:本題考查等差數(shù)列的性質(zhì),考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對邊分別為啊,a,b,c,且c=
2
,b=
6
,B=120°,則△ABC的面積等于( 。
A、
2
2
B、
3
2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A=[-1,3],則A∩Z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
2
bx+1
(a∈R,b>0,且b≠1)
(1)探索函數(shù)y=f(x)的單調(diào)性;
(2)求實數(shù)a的值,使函數(shù)y=f(x)為奇函數(shù);
(3)在(2)條件下,令b=2,求使f(x)=m(x∈[0,1])有解的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}為遞增數(shù)列,且a1<0,那么公比q的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x∈N|x≤4},A={1,2},則∁UA為( 。
A、{3}
B、{0,3}
C、{3,4}
D、{0,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-lgx
的定義域為A,函數(shù)g(x)=
x2-5x+6
的定義域為B,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2cos(
π
3
-ωx)的最小正周期是4π,則ω等于(  )
A、2
B、
1
2
C、±2
D、±
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,“實系數(shù)一元二次方程x2+ax+
9
4
=0的兩根都是虛數(shù)”是“存在復(fù)數(shù)z同時滿足|z|=2且|z+a|=1”的( 。l件.
A、充分非必要
B、必要非充分
C、充分必要
D、既非充分又非必要

查看答案和解析>>

同步練習(xí)冊答案