定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓

(1)若橢圓判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;

(2)寫出與橢圓C1相似且短軸半軸長為b的焦點在x軸上的橢圓Cb的標準方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?

(3)如圖:直線y=x與兩個“相似橢圓”

分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似的兩個相似三角形,寫出具體作法.(不必證明)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•徐匯區(qū)三模)定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線l與兩個“相似橢圓”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點A,B和點C,D,證明:|AC|=|BD|

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆福建省高二上學期期中考試理科數(shù)學試卷 題型:解答題

(本小題滿分14分)定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”。如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。

 

 

(1)若橢圓,判斷是否相似?如果相似,求出的相似比;如果不相似,請說明理由;

(2)寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關(guān)于直線對稱,求實數(shù)的取值范圍?

(3)如圖:直線與兩個“相似橢圓”分別交于點和點,證明:

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市浦東新區(qū)南匯中學高三第一次考試數(shù)學試卷(解析版) 題型:解答題

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市徐匯區(qū)、金山區(qū)高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

同步練習冊答案