若直線(1+a)x+y+1=0與圓x2+y2-2x=0相切,則a的值是( )
A.1或-1 B.2或-2 C.1 D.-1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集17講練習(xí)卷(解析版) 題型:填空題
從某項(xiàng)綜合能力測(cè)試中抽取50人的成績(jī),統(tǒng)計(jì)如下表,則這50人成績(jī)的方差為________.
分?jǐn)?shù) | 5 | 4 | 3 | 2 | 1 |
人數(shù) | 10 | 5 | 15 | 15 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集14講練習(xí)卷(解析版) 題型:解答題
設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是Q,點(diǎn)M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)拋物線焦點(diǎn)F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集13講練習(xí)卷(解析版) 題型:解答題
求圓心在拋物線x2=4y上,且與直線x+2y+1=0相切的面積最小的圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集13講練習(xí)卷(解析版) 題型:選擇題
已知x2+y2=1,則的取值范圍是( )
A.(-,) B.(-∞,) C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集12講練習(xí)卷(解析版) 題型:填空題
如圖所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分別是CC1,C1D1,D1D,DC的中點(diǎn),N是BC的中點(diǎn),點(diǎn)M在四邊形EFGH上或其內(nèi)部運(yùn)動(dòng),且使MN⊥AC.
對(duì)于下列命題:①點(diǎn)M可以與點(diǎn)H重合;②點(diǎn)M可以與點(diǎn)F重合;③點(diǎn)M可以在線段FH上;④點(diǎn)M可以與點(diǎn)E重合.其中真命題的序號(hào)是________(把真命題的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集12講練習(xí)卷(解析版) 題型:選擇題
設(shè)l是直線,α,β是兩個(gè)不同的平面,下列為真命題的是( )
A.若l∥α,l∥β,則α∥β B.若l∥α,l⊥β,則α⊥β
C.若α⊥β,l⊥α,則l⊥β D.若α⊥β,l∥α,則l⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集10講練習(xí)卷(解析版) 題型:解答題
等差數(shù)列{an}中,a3=3,a1+a4=5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題
在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2cos.若直線l與曲線C交于A,B兩點(diǎn),則|AB|=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com