【題目】某班級有50名學生,其中有30名男生和20名女生,隨機詢問了該班5名男生和5名女生在某次數(shù)學測驗中的成績,5名男生的成績分別為86,94,88,92,90,5名女生的成績分別為88,93,93,88,93.
①這種抽樣方法是一種分層隨機抽樣;
②這5名男生成績的方差大于這5名女生成績的方差;
③該班男生成績的平均數(shù)小于該班女生成績的平均數(shù).
則以上說法一定正確的是______.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A、B分別是橢圓的左、右端點,F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PA⊥PF.
(1)點P的坐標;
(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于MB,求橢圓上的點到點M的距離d的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.
(1)求的極坐標方程及點的極坐標;
(2)已知直線:與圓:交于,兩點,記的面積為,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是R上的奇函數(shù),m、n是常數(shù).
(1)求m,n的值;
(2)判斷的單調性并證明;
(3)不等式對任意恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間內沒有發(fā)生大規(guī)模群體感染的標志是“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是( )
A.甲地:總體均值為3,中位數(shù)為4B.乙地:中位數(shù)為2,眾數(shù)為3
C.丙地:總體均值為2,總體方差為3D.丁地:總體均值為1,總體方差大于0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:若x2+y2>2,則|x|>1或|y|>1;命題q:直線mx-2y-m-2=0與圓x2+y2-3x+3y+2=0必有兩個不同交點,則下列說法正確的是( )
A. p為真命題 B. p∧(q)為真命題
C. (p)∨q為假命題 D. (p)∨(q)為假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質量指標存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.
(Ⅰ)根據(jù)圖1,估計乙流水線生產(chǎn)產(chǎn)品該質量指標值的中位數(shù);
(Ⅱ)若將頻率視為概率,某個月內甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質量指標值與甲,乙兩條流水線的選擇有關”?
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com