【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖.

(1)求an
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?

【答案】
(1)解:如圖,a1=2,a2=4,

∴每年的費用是以2為首項,2為公差的等差數(shù)列,

∴an=a1+2(n﹣1)=2n


(2)解:設純收入與年數(shù)n的關系為f(n),

則f(n)=21n﹣[2n+ ×2]﹣25=20n﹣n2﹣25,

由f(n)>0得n2﹣20n+25<0,

解得10﹣5 <n<10+5 ,

因為n∈N,所以n=2,3,4,…18.

即從第2年該公司開始獲利


(3)解:年平均收入為 =20﹣(n+ )≤20﹣2×5=10,

當且僅當n=5時,年平均收益最大.

所以這種設備使用5年,該公司的年平均獲利最大.


【解析】(1)由題意知,每年的費用是以2為首項,2為公差的等差數(shù)列,求得:an=a1+2(n﹣1)=2n.(2)設純收入與年數(shù)n的關系為f(n),則f(n)=20n﹣n2﹣25,由此能求出引進這種設備后第2年該公司開始獲利.(3)年平均收入為 =20﹣(n+ )≤20﹣2×5=10,由此能求出這種設備使用5年,該公司的年平均獲利最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在某大學自主招生考試中,所有選報Ⅱ類志向的考生全部參加了數(shù)學與邏輯閱讀與表達兩個科目的考試,成績分為, , , 五個等級.某考場考生兩科的考試成績的數(shù)據(jù)如下圖所示,其中數(shù)學與邏輯科目的成績?yōu)?/span>的考生有人.

Ⅰ)求該考場考生中閱讀與表達科目中成績?yōu)?/span>的人數(shù).

Ⅱ)若等級, , 分別對應分, 分, 分, 分, 分.

。┣笤摽紙隹忌數(shù)學與邏輯科目的平均分.

ⅱ)若該考場共有人得分大于分,其中有分, 分, 分.

從這人中隨機抽取兩人,求兩人成績之和的分布列和數(shù)學期望.

科目:數(shù)學與邏輯

科目:閱讀與表達

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4—4:坐標系與參數(shù)方程】

將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>2倍,得曲線C.

Ⅰ)寫出C的參數(shù)方程;

設直線C的交點為,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=﹣x3+ax,其中a∈R,g(x)=﹣ x ,且f(x)<g(x)在(0,1]上恒成立.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題,則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某城市有一塊半徑為40m的半圓形O為圓心,AB為直徑綠化區(qū)域,現(xiàn)計劃對其進行改建.在AB的延長線上取點D,使OD=80m,在半圓上選定一點C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2. 設∠AOC=x rad.

(1)寫出S關于x的函數(shù)關系式S(x),并指出x的取值范圍;

(2)張強同學說:當∠AOC=時,改建后的綠化區(qū)域面積S最大.張強同學的說法正確嗎?若不正確,請求出改建后的綠化區(qū)域面積S最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) f (x) = x 2 + x,若不等式 f (x) + f (x)≤2 | x | 的解集為C. 1求集合C 2若方程 f (a x)a x + 1 = 5a > 0,a≠1 C上有解,求實數(shù) a 的取值范圍; 3)記 f (x) C 上的值域為 A g(x) = x 33tx + ,x[0,1] 的值域為B,且 A B,求實數(shù) t 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠ABC= ,PA⊥底面ABCD,PA=AB=2,M為PA的中點,N為BC的中點

(1)證明:直線MN∥平面PCD;
(2)求異面直線AB與MD所成角的余弦值;
(3)求點B到平面PCD的距離.

查看答案和解析>>

同步練習冊答案