已知數(shù)列的前n項(xiàng)和為Sn,并且滿足a1=2,nan+1=Sn+n(n+1).
(1)求{an}的通項(xiàng)公式;
(2)令Tn Sn,是否存在正整數(shù)m,對一切正整數(shù)n,總有Tn≤Tm?若存在,求m的值;若不存在,說明理由.

(1)an=2n.(2)m=8或m=9

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是各項(xiàng)均不為零的)項(xiàng)等差數(shù)列,且公差.
(1)若,且該數(shù)列前項(xiàng)和最大,求的值;
(2)若,且將此數(shù)列刪去某一項(xiàng)后得到的數(shù)列(按原來的順序)是等比數(shù)列,求的值;
(3)若該數(shù)列中有一項(xiàng)是,則數(shù)列中是否存在不同三項(xiàng)(按原來的順序)為等比數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}前三項(xiàng)之和為-3,前三項(xiàng)積為8.
(1)求等差數(shù)列{an}的通項(xiàng)公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足++…+=1-,n∈N* ,求{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工業(yè)城市按照“十二五”(2011年至2015年)期間本地區(qū)主要污染物排放總量控制要求,進(jìn)行減排治污.現(xiàn)以降低SO2的年排放量為例,原計(jì)劃“十二五”期間每年的排放量都比上一年減少0.3萬噸,已知該城市2011年SO2的年排放量約為9.3萬噸.
(1)按原計(jì)劃,“十二五”期間該城市共排放SO2約多少萬噸?
(2)該城市為響應(yīng)“十八大”提出的建設(shè)“美麗中國”的號召,決定加大減排力度.在2012年剛好按原計(jì)劃完成減排任務(wù)的條件下,自2013年起,SO2的年排放量每年比上一年減少的百分率為p,為使2020年這一年SO2的年排放量控制在6萬噸以內(nèi),求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)都不相等的等差數(shù)列{an}的前6項(xiàng)和為60,且a6為a1和a21的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若數(shù)列{bn}滿足bn+1-bn=an(n∈N*),且b1=3,求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}中,a2+a4=10,a5=9,數(shù)列{bn}中,b1=a1,bn+1=bn+an.
(1)求數(shù)列{an}的通項(xiàng)公式,寫出它的前n項(xiàng)和Sn.
(2)求數(shù)列{bn}的通項(xiàng)公式.
(3)若cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.
(1)求通項(xiàng)公式an
(2)設(shè)bn=2an,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}為等差數(shù)列,若<-1,且它們的前n項(xiàng)和Sn有最大值,求使得Sn<0的n的最小值.

查看答案和解析>>

同步練習(xí)冊答案