【題目】記函數(shù)的定義域為D,若存在,使成立,則稱以為坐標的點是函數(shù)的圖象上的“穩(wěn)定點”.

(1)若函數(shù)的圖象上有且只有兩個相異的“穩(wěn)定點”,試求實數(shù)a的取值范圍;

(2)已知定義在實數(shù)集R上的奇函數(shù)存在有限個“穩(wěn)定點”,求證:必有奇數(shù)個“穩(wěn)定點”.

【答案】(1) .(2)證明見解析

【解析】

1)設是函數(shù)的圖象上的兩個穩(wěn)定點,由定義可得,所以是方程的兩相異實根且不等于a,由此可得關于a的不等式組,解出即可;

2)由R上的奇函數(shù)可判斷原點(0,0)是函數(shù)的“穩(wěn)定點”,只要再說明除原點外“穩(wěn)定點”成對出現(xiàn)即可;

解:(1)設是函數(shù)的圖象上的兩個“穩(wěn)定點”,

,即有

有兩個不相等的實數(shù)根且不等于,

,解得

(2)據(jù)題意得:是定義在實數(shù)集R上的奇函數(shù).

是奇函數(shù),;所以必是函數(shù)的圖像上的“穩(wěn)定點”;

②若是函數(shù)的圖像上的“穩(wěn)定點”;是奇函數(shù),必有,故也是函數(shù)的圖像上的“穩(wěn)定點”;也就是說是成對出現(xiàn)的.

綜上所述:必有奇數(shù)個“穩(wěn)定點”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某服裝店為慶祝開業(yè)三周年,舉行為期六天的促銷活動,規(guī)定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,第五天該服裝店經(jīng)理對前五天中參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

1

2

3

4

5

4

6

10

23

22

1)若具有線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

2)預測第六天的參加抽獎活動的人數(shù)(按四舍五入取到整數(shù)).

參考公式與參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】今年五一小長假,以洪崖洞、李子壩輕軌、長江索道、一棵樹觀景臺為代表的網(wǎng)紅景點,把重慶推上全國旅游人氣搒的新高.外地客人小胖準備游覽上面這個景點,他游覽每一個景臺的概率都是,且他是否游覽哪個景點互不影響.設表示小胖離開重慶時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.

(1)記“函數(shù)是實數(shù)集上的偶函數(shù)”為事件,求事件的概率.

(2)求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設四棱錐P-ABCD的底面不是平行四邊形,用平面去截此四棱錐,使得截面是平行四邊形,則這樣的平面( )
A.不存在
B.有且只有1個
C.恰好有4個
D.有無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=logmm0m≠1),

I)判斷fx)的奇偶性并證明;

II)若m=,判斷fx)在(3,+∞)的單調(diào)性(不用證明);

III)若0m1,是否存在βα>0,使fx)在,β]的值域為[logmmβ-1),logmα-1]?若存在,求出此時m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

平面直角坐標系xOy中,曲線C.直線l經(jīng)過點Pm0),且傾斜角為O為極點,以x軸正半軸為極軸,建立極坐標系.

)寫出曲線C的極坐標方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于A,B兩點,且|PA·PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.

(1)求的通項公式;

(2)求Sn,并判斷Sn+1Sn,Sn+2是否成等差數(shù)列

查看答案和解析>>

同步練習冊答案