19.已知tanθ=2,則$sin(\frac{π}{2}+2θ)$的值為$-\frac{3}{5}$.

分析 由已知利用誘導(dǎo)公式,二倍角的余弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式化簡所求即可計(jì)算得解.

解答 解:∵tanθ=2,
∴$sin(\frac{π}{2}+2θ)$=cos2θ=$\frac{co{s}^{2}θ-si{n}^{2}θ}{co{s}^{2}θ+si{n}^{2}θ}$=$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$=$\frac{1-{2}^{2}}{1+{2}^{2}}$=-$\frac{3}{5}$.
故答案為:-$\frac{3}{5}$.

點(diǎn)評 本題主要考查了誘導(dǎo)公式,二倍角的余弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}3{x^2}-4,x>0\\ x+2,x=0\\-1,x<0\end{array}$,則$f(f(\frac{1}{2}))$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x-y+1≤0\\ x-2y-1≥0\end{array}$,則z=27-x•$\frac{1}{{3}^{y}}$的最小值為( 。
A.$\sqrt{3}$B.9C.81D.$27\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+2ex2-x2+mx-e2(x>0),若f(x)=0有兩個相異實(shí)根,則實(shí)數(shù)m的取值范圍是( 。
A.(-e2+2e,0)B.(-e2+2e,+∞)C.(0,e2-2e)D.(-∞,-e2+2e)

第Ⅱ卷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知A(1,-1),B(4,0),C(2,2).平面區(qū)域D由所有滿足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成.若區(qū)域D的面積為8,則的a+4b最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.計(jì)算:
(1)${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}$;
(2)$\frac{1}{{\sqrt{5}-2}}-{(\sqrt{5}+2)^0}-\sqrt{{{({2-\sqrt{5}})}^2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.過點(diǎn)(5,2),且在x軸上的截距(直線與x軸交點(diǎn)的橫坐標(biāo))是在y軸上的截距的2倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,一輛汽車從O點(diǎn)出發(fā),沿海岸線一直線公路以100千米/小時的速度向東勻速行駛,汽車開動時,在距O點(diǎn)500千米,且與海岸線距離400千米的海面上M點(diǎn)處有一艘快艇與汽車同時出發(fā),要把一件重要物品送給這輛汽車司機(jī),該快艇至少以多大的速度行駛,才能將物品送到司機(jī)手中?并求出此時快艇行駛的方向.(參考數(shù)據(jù):cos60°25′=$\frac{2}{5}$,cos53°08′=$\frac{3}{5}$,cos36°52′=$\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知橢圓C:$\frac{x^2}{9}+\frac{y^2}{b^2}$=1(0<b<3)的左右焦點(diǎn)分別為E、F,過點(diǎn)F的直線交橢圓于A,B兩點(diǎn),若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,且$\overrightarrow{AE}$•$\overrightarrow{BE}$=16.
(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓交于不同的兩點(diǎn)P,Q,判斷在x軸上是否存在定點(diǎn)N,使x軸平分∠PNQ,若存在,求出點(diǎn)N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案