橢圓的左、右焦點分別為、,若橢圓上恰好有6個不同的點,使得為等腰三角形,則橢圓的離心率的取值范圍是( )
A. B. C. D.
D
【解析】
試題分析:解:
①當(dāng)點P與短軸的頂點重合時,△F1F2P構(gòu)成以F1F2為底邊的等腰三角形,此種情況有2個滿足條件的等腰△F1F2P;②當(dāng)△F1F2P構(gòu)成以F1F2為一腰的等腰三角形時,以F2P作為等腰三角形的底邊為例,∵F1F2=F1P,∴點P在以F1為圓心,半徑為焦距2c的圓上,因此,當(dāng)以F1為圓心,半徑為2c的圓與橢圓C有2交點時,存在2個滿足條件的等腰△F1F2P,此時a-c<2c,解得a<3c,所以離心率e>當(dāng)e=時,△F1F2P是等邊三角形,與①中的三角形重復(fù),故e≠同理,當(dāng)F1P為等腰三角形的底邊時,在e> 且e≠ 時也存在2個滿足條件的等腰△F1F2P,這樣,總共有6個不同的點P使得△F1F2P為等腰三角形,綜上所述,離心率的取值范圍是:e∈,故選D.
考點:橢圓的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì)
點評:本題給出橢圓的焦點三角形中,共有6個不同點P使得△F1F2P為等腰三角形,求橢圓離心率e的取值范圍.著重考查了橢圓的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
PA |
PB |
AB |
AP |
PB |
AB |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
PA |
PB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)已知橢圓的左、右焦點分別為F1、F2,其中F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com