【題目】拋物線過點.

1)求拋物線的方程;

2)設(shè)軸上一點,為拋物線上任意一點,求的最小值;

3)過拋物線的焦點,作相互垂直的兩條弦,求的最小值.

【答案】12)當時,的最小值為;當時,的最小值為332

【解析】

1)將點代入拋物線方程,解出,即可求出;

2)設(shè)出點,根據(jù)距離公式表示出,再根據(jù)二次函數(shù)知識即可求出;

3)由題可知兩直線斜率都存在,所以設(shè),將直線方程與拋物線方程聯(lián)立,利用韋達定理求出,,根據(jù)弦長公式即可求出的長,然后根據(jù)基本不等式即可求出.

1)將點代入拋物線方程,得,解得,

所以拋物線的方程為:

2)設(shè)點,則,

所以

設(shè),對稱軸為

時,上單調(diào)遞增,所以,即的最小值為

時,上單調(diào)遞減,在上單調(diào)遞增,所以,的最小值為

綜上,當時,的最小值為;當時,的最小值為

3)由題可知兩直線斜率都存在,設(shè),,

,,

,化簡得,,所以,

同理可得,,即,,

的最小值為32

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比.已知橢圓

1)若橢圓,判斷是否相似?如果相似,求出的相似比;如果不相似,請說明理由;

2)寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關(guān)于直線對稱,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的參數(shù)方程;

(2)若曲線與曲線,在第一象限分別交于兩點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大城市一家餐飲企業(yè)為了了解外賣情況,統(tǒng)計了某個送外賣小哥某天從9:00到21:00這個時間段送的50單外賣.以2小時為一時間段將時間分成六段,各時間段內(nèi)外賣小哥平均每單的收入情況如下表,各時間段內(nèi)送外賣的單數(shù)的頻率分布直方圖如下圖.

時間區(qū)間

每單收入(元)

6

5.5

6

6.4

5.5

6.5

(Ⅰ)求頻率分布直方圖中的值,并求這個外賣小哥送這50單獲得的收入;

(Ⅱ)在這個外賣小哥送出的50單外賣中男性訂了25單,且男性訂的外賣中有20單帶飲品,女性訂的外賣中有10單帶飲品,請完成下面的列聯(lián)表,并回答是否有的把握認為“帶飲品和男女性別有關(guān)”?

帶飲品

不帶飲品

總計

總計

附:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,平面平面ABC,.

1)若,求證:平面平面PBC;

2)若PA與平面ABC所成的角為,求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知半圓,、分別為半圓軸的左、右交點,直線過點且與軸垂直,點在直線上,縱坐標為,若在半圓上存在點使,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達標

鍛煉達標

合計

20

110

合計

并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關(guān)?

(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出5人,進行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記無窮數(shù)列的前項中最大值為,最小值為,令

(1)若,寫出,,的值;

(2)設(shè),若,求的值及時數(shù)列的前項和

(3)求證:“數(shù)列是等差數(shù)列”的充要條件是“數(shù)列是等差數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】七巧板是古代中國勞動人民發(fā)明的一種中國傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識》卷一中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案