精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,P為直線上的動點,動點Q滿足,且原點O在以為直徑的圓上.記動點Q的軌跡為曲線C

1)求曲線C的方程:

2)過點的直線與曲線C交于A,B兩點,點D(異于AB)在C上,直線分別與x軸交于點M,N,且,求面積的最小值.

【答案】12

【解析】

1)設動點,表示出,再由原點O在以為直徑的圓上,轉化為,得到曲線C的方程.

2)設而不解,利用方程思想、韋達定理構建面積的函數關系式,再求最小值.

解:(1)由題意,不妨設,則,,

O在以為直徑的圓上,∴,,

,∴曲線C的方程為.

2)設,,,

依題意,可設(其中),由方程組消去x并整理,得

,則,

同理可設,

可得,

,

又∵,∴

,∴

,

,

∴當時,面積取得最小值,其最小值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1)函數內有兩個不同零點,求的取值范圍;

2)在第(1)問的條件下判斷當時,曲線是否位于軸下方,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標準如下:4小時內(4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(24小時)收費30元;超過24小時,按前述標準重新計費.上述標準不足一小時的按一小時計費.為了調查該停車場一天的收費情況,現統(tǒng)計1000輛車的停留時間(假設每輛車一天內在該停車場僅停車一次),得到下面的頻數分布表:

以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.

(1)現在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調研,記錄并統(tǒng)計了停車時長與司機性別的列聯表:

完成上述列聯表,并判斷能否有的把握認為停車是否超過6小時與性別有關?

(2)(i)X表示某輛車一天之內(含一天)在該停車場停車一次所交費用,求X的概率分布列及期望:

(ii)現隨機抽取該停車場內停放的3輛車,表示3輛車中停車費用大于的車輛數,求P()的概率.

參考公式:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)引進現代化管理體制,生產效益明顯提高,2019年全年總收入與2018年全年總收入相比增長了一倍,同時該企業(yè)的各項運營成本也隨著收入的變化發(fā)生相應變化,下圖給出了該企業(yè)這兩年不同運營成本占全年總收入的比例,下列說法錯誤的是(

A.該企業(yè)2019年研發(fā)的費用與原材料的費用超過當年總收入的50%

B.該企業(yè)2019年設備支出金額及原材料的費用均與2018相當

C.該企業(yè)2019年工資支出總額比2018年多一倍

D.該企業(yè)2018年與2019研發(fā)的總費用占這兩年總收入的20%

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,國家為了鼓勵高校畢業(yè)生自主創(chuàng)業(yè),出臺了許多優(yōu)惠政策,以創(chuàng)業(yè)帶動就業(yè).某高校畢業(yè)生小李自主創(chuàng)業(yè)從事海鮮的批發(fā)銷售,他每天以每箱300元的價格購入基圍蝦,然后以每箱500元的價格出售,如果當天購入的基圍蝦賣不完,剩余的就作垃圾處理.為了對自己的經營狀況有更清晰的把握,他記錄了150天基圍蝦的日銷售量(單位:箱),制成如圖所示的頻數分布條形圖.

1)若小李一天購進12箱基圍蝦.

①求當天的利潤(單位:元)關于當天的銷售量(單位:箱,)的函數解析式;

②以這150天記錄的日銷售量的頻率作為概率,求當天的利潤不低于1900元的概率;

2)以上述樣本數據作為決策的依據,他計劃今后每天購進基圍蝦的箱數相同,并在進貨量為11箱,12箱中選擇其一,試幫他確定進貨的方案,以使其所獲的日平均利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,,,有下述四個結論:

①若的重心,則

②若邊上的一個動點,則為定值2

③若,邊上的兩個動點,且,則的最小值為

④已知內一點,若,且,則的最大值為2

其中所有正確結論的編號是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等差數列中,已知公差 ,且, , 成等比數列.

(1)求數列的通項公式;

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據題意, , 成等比數列得求出d即可得通項公式;(2)求項的絕對前n項和,首先分清數列有多少項正數項和負數項,然后正數項絕對值數值不變,負數項絕對值要變號,從而得,得,由,得,∴ 計算 即可得出結論

解析:(1)由題意可得,則 ,

,即,

化簡得,解得(舍去).

.

(2)由(1)得時,

,得,由,得,

.

.

點睛:對于數列第一問首先要熟悉等差和等比通項公式及其性質即可輕松解決,對于第二問前n項的絕對值的和問題,首先要找到數列由多少正數項和負數項,進而找到絕對值所影響的項,然后在求解即可得結論

型】解答
束】
18

【題目】甲、乙兩家銷售公司擬各招聘一名產品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數的函數關系式;

(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:

某大學畢業(yè)生擬到兩家公司中的一家應聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學高二年級組織外出參加學業(yè)水平考試,出行方式為:乘坐學校定制公交或自行打車前往,大數據分析顯示,當的學生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據上述分析結果回答下列問題:

(1)當在什么范圍內時,乘坐定制公交的平均時間少于自行打車的平均時間?

(2)求該校學生參加考試平均時間的表達式:討論的單調性,并說明其實際意義.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正方體中,點是線段上的動點,以下結論:

平面;

③三棱錐,體積不變;

中點時,直線與平面所成角最大.

其中正確的序號為( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

同步練習冊答案