【題目】設(shè)數(shù)列的前n項和為,,且對任意正整數(shù)n,點(,)在直線上.
(1)求數(shù)列的通項公式;
(2)是否存在實數(shù)λ,使得數(shù)列{ }為等差數(shù)列?若存在,求出λ的值;若不存在,請說明理由;
【答案】(1)an=()n-1;(2)λ=2.
【解析】試題分析:(Ⅰ)利用數(shù)列{an}的前n項Sn與an的關(guān)系得到數(shù)列相鄰項之間的關(guān)系式,為等比數(shù)列,進而確定出其通項公式;
(Ⅱ)確定出數(shù)列{an}的前n項和為Sn的表達式是解決本題的關(guān)鍵,數(shù)列為等差數(shù)列首先保證其前3項滿足等差數(shù)列的關(guān)系,得出關(guān)于λ的方程,從而確定出λ的值.
試題解析:
(1)由2an+1+Sn-2=0①
當n≥2時2an+Sn-1-2=0② ∴2an+1-2an+an=0 ∴= (n≥2)
∵a1=1,2a2+a1=2a2= ∴{an}是首項為1,公比為的等比數(shù)列,
∴an=()n-1.
(2)Sn=2-
若為等差數(shù)列,則S1+λ+,S2+2λ+,S3+3λ+成等差數(shù)列,∴2(S2+2λ+)=S1+λ+S3+ ∴λ=2,經(jīng)檢驗知為等差數(shù)列。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將數(shù)字1,2,3,…, ()全部填入一個2行列的表格中,每格填一個數(shù)字,第一行填入的數(shù)字依次為, ,…, ,第二行填入的數(shù)字依次為, ,…, .記.
(Ⅰ)當時,若, , ,寫出的所有可能的取值;
(Ⅱ)給定正整數(shù).試給出, ,…, 的一組取值,使得無論, ,…, 填寫的順序如何, 都只有一個取值,并求出此時的值;
(Ⅲ)求證:對于給定的以及滿足條件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出了四個類比推理:
①為實數(shù),若則;類比推出: 為復(fù)數(shù),若則.
② 若數(shù)列是等差數(shù)列, ,則數(shù)列也是等差數(shù)列;類比推出:若數(shù)列是各項都為正數(shù)的等比數(shù)列, ,則數(shù)列也是等比數(shù)列.
③ 若則; 類比推出:若為三個向量,則.
④ 若圓的半徑為,則圓的面積為;類比推出:若橢圓的長半軸長為,短半軸長為,則橢圓的面積為.上述四個推理中,結(jié)論正確的是( )
A. ① ② B. ② ③ C. ① ④ D. ② ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點在直線上,且拋物線截直線所得的弦的長為.
(Ⅰ)求拋物線的方程和的值.
(Ⅱ)以弦為底邊,以軸上點為頂點的三角形面積為,求點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,過點作圓的切線,切點分別為, ,直線恰好經(jīng)過橢圓的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的右焦點作兩條互相垂直的弦, ,設(shè), 的中點分別為, ,證明:直線必過定點,并求此定點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式ax2﹣2x+1>0對x∈( ,+∞)恒成立,則a的取值范圍為( )
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2+5x+c>0的解集為{x| <x< },
(1)求a,c的值;
(2)解關(guān)于x的不等式ax2+(ac+b)x+bc≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,動圓與圓外切,且與直線相切,記圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)過定點(為非零常數(shù))的動直線與曲線交于兩點,問:在曲線上是否存在點(與兩點相異),當直線的斜率存在時,直線的斜率之和為定值.若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com