函數(shù)f(x)=(
1
5
)x2-2x
的單調(diào)遞增區(qū)間是
 
考點:指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減,得到答案.
解答: 解:設(shè)u=x2-2x,在(-∞,1)上為減函數(shù),在(1,+∞)為增函數(shù),
因為函數(shù)y=(
1
5
)x
為減函數(shù),
所以f(x)=(
1
5
)x2-2x
的單調(diào)遞增區(qū)間(-∞,1),
故答案為:(-∞,1),
點評:本題主要考查了復(fù)合函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(2-x)=f(x)恒成立,且當(dāng)x∈(-1,0)時,f(x)=ln(x+1),則當(dāng)x∈(2013,2014)時,f(x)=( 。
A、-ln(x-2013)
B、ln(x-2013)
C、-ln(2014-x)
D、ln(2014-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩條直線l1:(m-2)x+y+m=0與l2:3x+my+m+6=0平行,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的極坐標(biāo)方程為3ρcosθ+4ρsinθ+3=0,則曲線C上到直線l的距離為2的點有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式 (x-a)(1-x-a)<1對任意實數(shù)x成立,則( 。
A、-1<a<1
B、0<a<2
C、-
3
2
<a<
1
2
D、-
1
2
<a<
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)命題P:函數(shù)y=cx在R上為減函數(shù),命題q:對?x∈[
1
2
,2],x+
1
x
1
c
.如果“p或q”為真命題,“p或q”為真命題,“p且q”為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算lg4+2lg5+eln2+log
3
3
3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)
a+i
2i
的實部與虛部相等,則實數(shù)a=( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ax2+2x+1=0至少有一個負(fù)實根,則a的范圍是
 

查看答案和解析>>

同步練習(xí)冊答案