(2009•青島一模)已知等差數(shù)列{an}的公差為d(d≠0),且a3+a6+a10+a13=32,若am=8,則m為( 。
分析:根據(jù)a3+a6+a10+a13 中各項(xiàng)下標(biāo)的特點(diǎn),發(fā)現(xiàn)有3+13=6+10=16,優(yōu)先考慮等差數(shù)列的性質(zhì)去解.
解答:解:a3+a6+a10+a13=32即(a3+a13)+(a6+a10)=32,
根據(jù)等差數(shù)列的性質(zhì)得 2a8+2a8=32,a8=8,∴m=8
故選:B.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì).掌握等差數(shù)列的有關(guān)性質(zhì),在計(jì)算時(shí)能夠減少運(yùn)算量,凸顯問(wèn)題的趣味性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青島一模)已知(x2+
1
x
n的二項(xiàng)展開(kāi)式的各項(xiàng)系數(shù)和為32,則二項(xiàng)展開(kāi)式中x的系數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青島一模)復(fù)數(shù)
i
1+2i
(i是虛數(shù)單位)的實(shí)部是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青島一模)已知集合A={x|x2-x-12≤0,x∈Z},從集合A中任選三個(gè)不同的元素a,b,c組成集合M,則能夠滿足a+b+c=0的集合M的概率為=
3
28
3
28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青島一模)在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為矩形,AB=PA=
1a
BC(a>0)

(Ⅰ)當(dāng)a=1時(shí),求證:BD⊥PC;
(Ⅱ)若BC邊上有且只有一個(gè)點(diǎn)Q,使得PQ⊥QD,求此時(shí)二面角A-PD-Q的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案